IOWA State University

Digital Repository

International transmissions of income and growth

Apostolos Condos
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Economics Commons

Recommended Citation

Condos, Apostolos, "International transmissions of income and growth" (1962). Retrospective Theses and Dissertations. 16449.
https://lib.dr.iastate.edu/rtd/16449
by

Apostolos Condos

A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE

Major Subject: Qeneral Economics

Signatures have been redacted for privacy

Iowa State University
Of Science and Technology Ames, Iows

1962
HB17I
C754i 11
C. 2
TABLE OF CONTEMTS

Page

INTRODUCTION 1
A MODEL OF AN OPEN ECONOMY 4
A TWO-COUNTEY INTEENATIONAL SYSTER 42
EQUILIBRIUN BATE OF OROUTH AND TEE INTERNATIONAL ECONOMIC SYSTEM 79
A GENERALIZED MODEL OF INTERNATIONAL TRADE 87
THE THEORY OF INTERMATIOMAL TBANSMISSIONS AND
EMPIPICAL BESEARCH 95
COMCLUSIONS 113
BIBLIOGRAPHY 116
ACENOMLEDOEMENTS 119

INTRODUCTION

The purpose of this essay is to present a systematic discussion of international transmissions of income and growth from the standpoint of pure theory.

The general background of the discussion of this topic in the ilterature is essentially the Keynesian analysis of income determination. It is then easy to draw the inmitations of the conclusions arrived at, however the specific models employed may alffer from each other. The short-run character and the underemployment setting of Keynesian analys is is carried over in considering the intersctions of the incomes and their components of various countries linked together into an international economic system. The limited soope of this approach can bearly be concealed by the dynamization of the basic analytical tools of the static theory. arowth theory based essentially on dynamic IS and LM curves in highly aggregative models turns out to being no more than investigation of intertemporal equilibrium conditions. Therever these conditions are not met, growth theory yields mostly embarrassing implications and certainly cannot be used for prediotions. It is not however entirely useless. Bconomic theory cannot do away with a number of 1deas which are verifiable under ideal conditions only, without reduction in the wealth of its "language". As it stands, this particular kind of theorizing gives much insight into the economic mechanism
and at any rate it established the conceptual background for very recent attempts to adjust growth theory to empiriael needs by disaggregation of the concept of national income and its large components, consumption and investment, into meanIngful smaller aggregates.

This essay follows the pattern of the highly aggregative models and foouses its interest on the function of the forelgn sector as a component of national income (exports) and transmitter of income and growth through the import function. The examination of the equilibrium conditions of a twocountry international system in a dynamic context was done Independently of Harry Johnson's contribution Johnson (15) but it was not oarried as far, because of the complexity of the mathematical argument.

At the end of this essay empirical findings by researchers tho employed essentially similar techniques in investigating international income transmissions have been summarized Neisser (27), Polak (30), Beckerman (4).

A few words should be sald about price effects not being analyzed. The assumption of the existence of substantial underemployment which makes it possible to abstract from prioe effects camnot be considered to reflect the economic reality of the postwar period, in Eeneral. Hence, prices should be considered in any attempt at a more complete theory, especially when no empirical research (where it is very often the
case that price effects are not statisticsily very significant for smell disturbances) is undertaken.

The narrowness of the scope of the present work, explicItly recognized, it is hoped, serves as an exouse for the omission.

A MODEL OF AN OPEN ECONOMY

It is intended to firgt set up a model of an open economy, the unit in an international economic system. The orientation of the analysis at the beginning is to determine the equilibrium level of income of an economy engaged in free trade in a setting of perfect competition, where the aggregate production function is homogeneous of first degree (constant returns to scale). We shall further assume a constant price level domestically and intemetionally. The realism of the assumption about constancy of the price level depends on presupposing a general underemployment of resources and a perfectly elastic supply of them. Under these conditions a change in income does not induce price changes, at least over a conslderable range in the path towards full employment. It is however an oversimplifioation to assume, as it is often the case, that the supply function of output 1s perfectly elastio up to a point in the neighborhood of full employment and perfectly inelastic beyond this point. Keynes himself noted Keynes (16) that some price inoreases may ocour at an earller stage refllecting bottlenecks as long as excess capacity diminishes and all sorts of rigidities such as immoblities of resources, increasing difficulties in factor substitution, and effects of monopolistic groups become operative. Nevertheless, on the basis of em-
pirical evidence there has been a tendency in the pield of Intermational trade to yleld some priority to the income offeots over the price effects, on the ground that the income elasticity with reapeot to effeotive demand is larger than the price elastiolty.

A three-sector economy w111 be consldered. The sectors contributing to the formation of the national inoome will be the consumption sector, the investment seotor, and the for elgn trade sector.

By taking acoount of a foreign sector, the following facts are soknomledged. The goods and servioes produced in a country are nelther consumod nor used for investments entirely by restaents of that country. A part of the goods and services domestionily produced is exported. On the other hand, part of the aggregate national consumption consiste of imported goods and services and part of the total amount of Investment represente foreign investment into the country under consideration.

Pinally, a country pays interest and dividends on oapital borrowed from abroad and recelves payments on Interest and dividends resulting from capital which was lent by her to other countries. National income, then, is equal to: aggregate consumption, plus total net investment, plus the state of the balance of payments, or

$$
Y=C+I+X-n
$$

Where Y stands for national income, M for 1 mports of goods and services, and payments of dividends snd interest abroad henceforth it will be referred to as "imports" - C for aggregate consumption, I for total net investment, in other words total domestio plus net foreign investment and X for export of goods and services and recelpts of payments from abroad on dividends and interest - which will be referred to as "exports".

It follows, that since in a closed economy $Y-C=S$; $I=S 18$, the equilibrium condition; while in an open system $S=I+X-M$, or $S-I=X-M$ where $S=$ saving. This naturally means that in equilibrium the difference between saving and investment is matched by the difference of the balance of payments.

In the traditional way, the aggregate consumption will be expressed, in real terms, as a function of the national income.

Linear case

General case

$$
\begin{equation*}
c=c Y+c_{0} \quad(1 a) \quad c=c(Y) \tag{1a}
\end{equation*}
$$

Where I is national income,

$$
c=C^{\prime}(Y)=\frac{d C}{d Y}
$$

the marginal propensity to consume and C_{0} the component of
consumption not dependent on Y. The marginal propensity to consume has been established in theoretioal and empirical analysis as a parameter of considerable constancy.

If the model is to be not of the shortest run, an investment function must be introduced to relate investment expenditure to Y.

Then:

> Linear case General case

$$
\begin{equation*}
I=b Y+I_{0} \tag{2}
\end{equation*}
$$

$$
I=I(Y)
$$

Where I_{0} is autonomous investment and b the fraction of Y spent on investment projects. Here one must state explicitly that Equations 2, 2^{\prime} do not incorporate any established behavioral hypothesis regarding investment spending. It seems however, on the basis of research done up to date, that there is not any other functional relationship which explains investment in a satisfactory manner. Equation 2 then may be tentatively accepted as an approximation to the "true" but unknown functional form.

The foreign sector of the economy will consiet of an import function and an export function.

The import function w111 express the value or volume of imports as dependent on the level of income.
Linear case
General case
$\mathrm{M}=\mathrm{mX}+\mathrm{M}_{\mathrm{O}}$
(3)
$M=M(Y)$

Where

$$
M=M^{\prime}(X) \frac{d M}{d Y}
$$

is the marginal propensity to import and M_{0} is the autonomous component.

The import function is assumed in general to be monotonically increasing. Exports are given exogenously.

$$
\begin{gather*}
\text { Linear case } \\
x=\overline{\mathrm{X}} \tag{4}
\end{gather*}
$$

On the basis of the above equations, the incomedetermination expression 1s:

$$
\begin{gather*}
\text { Linear case } \\
\mathrm{X}=\mathrm{cY}+\mathrm{C}_{0}+\mathrm{bY}+\mathrm{I}_{0}+\overline{\mathrm{X}}-\mathrm{mY}-\mathrm{M}_{0} \tag{5}
\end{gather*}
$$

General case $Y=c(Y)+I(Y)+\bar{X}-m(Y)$

Equation 5 becomes upon solving for Y :

$$
\begin{equation*}
Y=\frac{C_{0}+I_{0}-M_{0}+\bar{X}}{1+m-c-b} \tag{6}
\end{equation*}
$$

This result suggests that the equilibrium value of income equals the constant $\left(C_{0}+I_{0}-M_{0}+\bar{X}\right)$ multiplied by

$$
\frac{1}{1+m-c-b}
$$

This last term is the multiplier of the system.
A multiplier in its broadest sense has no separate ex1stence from a specific economic model to which it refers. Furthermore, within an economic model there are as many multipliers as possible marginal effects of a change of any economic variable upon another of which the first one is a component. Hence, the complexity or simplicity of a multiplier depends on the number of marginal relationsh1ps of economic variables under simultaneous consideration.

Naturally, distinguishing within any model between exogenous and endogenous variables one can investigate the effects of a change of an exogenous variable on one or more endogenous variables but not vice versa. A multiplier in that case can be only a derivative of an endogenous variable with respect to an exogenous one.

Let us consider the model summarized in identity (\bar{S}^{\prime}). Differentiating the identity ($\overline{\mathrm{S}^{1}}$) with respect to y , we obtain.

$$
I=\frac{d C}{d Y}+\frac{d I}{d Y}-\frac{d M}{d Y}
$$

From Equation 61 we can easily derive expressions such as

$$
\frac{d Y}{d C}=\frac{1}{I-I^{\prime}+M^{\prime}}, \frac{d Y}{d M}=\frac{1}{C^{\prime}+I^{\prime}-I},
$$

where

$$
I^{\prime}=\frac{d I}{d Y}, C^{\prime}=\frac{d C}{d Y} \text { etc. }
$$

These expressions are the consumption multiplier, the import multiplier etc.

Using the method employed by C. Clerk and Kahn, we write:

$$
\begin{gathered}
\frac{d y}{d I}=1+\left(C^{\prime}-M^{\prime}\right)+\left(C^{\prime}-M^{\prime}\right)^{2}+\left(C^{\prime}-M^{\prime}\right)^{3}+\ldots \\
\frac{d y}{d C}=1+\left(I^{\prime}-M^{\prime}\right)+\left(C^{\prime}-M^{\prime}\right)^{2}+\ldots+\ldots
\end{gathered}
$$

and so on. Now, on the basis of empirical evidence the normal case is for the term ($C^{\prime}+I^{\prime}-M^{\prime}$) to be less than un1ty. For, the marginal propensity to consume is in the longer run certainly less than unity. The stablity conditions require that $C^{\prime}+I^{\prime}<I$, (or that b in the linear case be

$$
2-c)
$$

If we assume a positive marginal propensity to import the term $\left(C^{\prime}+I^{\prime}-M^{\prime}\right)$ is a fortiori less than unity.

Then, according to the rule of summation of the terms of a geometric progression any of the above aeries reduces
to an expression such as:

$$
\frac{d y}{d X}=\lim _{m \rightarrow \infty} \frac{1-\left(C^{\prime}+I^{\prime}-M^{\prime}\right)^{n}}{1-\left(C^{\prime}+I^{\prime}-M^{\prime}\right)}=\frac{1}{1-C^{\prime}-I^{\prime}+M^{\prime}} .
$$

From this last expression we see that

$$
d Y=\frac{d X}{I-C^{\prime}-I^{\prime}+M^{\prime}}
$$

The meaning of this equation is clear. The increment in income-creating exports is multiplied by the factor

in order to give the equilibrium value of the income increase.

In the model presented, it was assumed that all exports are income-creating, all imports income-leakages, while no reference was made at all to sales or purchases on capital account which may be an 1 mportant component of the foreign sector. It is proposed now to examine briefiy this topic.

It is customary in the discussion of models of an open economy to include in exports and imports the itema which make up the balance of trade - transactions on current account - without taking into account capital movements. This light be caused by the fact that the theory of capitel movements is a complex one.

If one considers securities as commodities obeying the conventional rules of the items of the balance of trade, one should have little to modify in the general notation. An import of securities - a aspital outflow should have a negative sign in the income-determination identity and an export of them should carry a positive sign.

But one has to keep in mind the following considerations.

The general notion that exports oreate income depends on an assumption about an economy's inetitutional behavior. It is, namely, assumed that the banking system of a country is alwaye prepared to acquire foreign claims possessed by exporters as a result of their sales abroad against domestic currency which is going to be used for factor purchases in the production of exportables.

Imports, on the other hand, are cons1dered leakages from the system because the banking system is supposed to absorb domestic currency in order to accommodate the $1 \mathrm{~m}-$ porters demanding foreign values to pay for their imports, In other words, general convertibliity of ourrencies 18 assumed. If one adopts the broad Keynesian definition of foreign lending as the sum of inerements or decrements in balances held abroad, one sees that behind each current-account 1tem movement there is always a corresponding capital movement either induced as in the case of a change in balances
resulting from current transaotion or autonomous. One now must state the conditions under which the opposite movements of various items in the balance of payments interact upon each other in affeoting the net reault.

This will enable one to refine the model by the introduction of parameters describing the role of exports and imports, defined broadly to include the movements of claims, in determining the level of income.

The distinction between induced and autonomous oapital movements becomes neeessary for the present purpose. Bagnar Nurkse (28) defines the induced capital movements as those "which result from changes in other items in the Balance of Payments". Carl Iversen (14) calls them "shortterm equalizing capital movements".

The autonomous capital movements are defined as those resulting from a shift in the demand or supply functions for, or of, forelgn balances and securities.

The theory of this sort of oapital movement is a complex and controversial one and is not to be dealt with in this essay.

Carl Iversen (14) remariss: "...the long-term real ap1tal movement.. is temporarily offset by a short-term equalizing oapital transfer in the opposite direction".

It is this autonomous kind of capital movements that is incluaed in the income-determination identity as component of the exports and the imports.

This inclusion, however, is followed by some difficulties, especially as regards the import function. It was noted previously, that the relationship between imports and level of income is an established one in the analysis, but 1 mports are defined in this context to refer only to the ourrent account items. It might be assumed that with growing income there is a growing amount of foreign claimg being socumulated indicating an increasing ability of the growing economy to lend. Besides, the realism of such an assumption is supported by the following consideration. The international flow of capital is a function of yield. As income increases, the supply of loanable funds increases leading to a decrease of the rate of interest which in turn induces capital movements out.

The question now is: If a spontaneous change ocours in the domestic demana for imports - including foreign assets by which mechanism is the level of income affected and to which extent?

There is no unambiguous answer to this question. A taxonomic analysis is needed in order to oonsider plausible alternatives.

It all depends, then on whether the spontaneous* change In the 1 mport demand takes place at the expense of:
a. Iale funds
b. Bank debts
c. Domestic investment
d. Consumption

In the first two cases (idle funds and bank debts) the equilibrium level of income is not going to be affected, because aggregate demand is unaltered.

In the last two cases, or in any case in which domestic aggregate demand is partially reduced in order to finance the increase in autonomous imports, the equilibrium level of income is going to be negatively affected, assuming away for the time being, all possible effects from induced foreign

[^0]demand for exports.
The above instances can be most clearly analyzed by reference to the representation of macroeconomic equilibrium employing the Hacksian (12) LM and IS curves and broadening their meaning to take account of the foreign sector.

But before doing this, let us bring together the ingredients of the open economy to see what modifications are now needed. Use will be made of the linear case in order to aohleve explioit solutions.

$$
\begin{gather*}
C=c Y+C_{O} \tag{1a}\\
I=b Y+I_{O} \tag{2}\\
M=m Y+M_{O} \tag{3}\\
X=\bar{X} \tag{4}\\
Y=C+I+X-M \tag{5}
\end{gather*}
$$

The modifications needed in order to employ the macro-economic-equilibrium technique are due to the monetary sector. Here constant terms of trade are postulated in real. terms in order to avold introducing price-effects. Consequently, the import function will remain unchanged and only an additive term is to be included in the investment Equation 2. If 1 is the index-rate of interest, then

$$
\begin{equation*}
I=b Y-b 1+I_{0} \tag{2}
\end{equation*}
$$

where h is the slope of the investment function on a rate-of-interest - investment-spending surface at Y constant. The money supply in the economy is assumed perfectly inelastic, given by

$$
M^{(s)}=\bar{M}^{(s)} .
$$

This amount is split into a component describing iiquidity preference as a function of 1 , shaped in the traditional way Modigliani (25) and a component describing the amount desired Por transaction purposes, as a function of real ineome,

$$
M^{(T)}=M^{(T)}(\mathrm{Y})
$$

so that

$$
\bar{M}^{(a)}=M^{(a)}+M^{(T)}(Y) .
$$

The equilibrium conditions in this macroeconomic model require both the real market and the money market to be in equilibrium. At any level of y the real merket is in equiIlbrium when the supply is equal to the demend made up by domestic investment spending, consumption spending and spendIng on the production of exportables. The money market is in equilibrium when

$$
M^{(s)}=M^{(d)},
$$

When the supply of money equals the demand for it. The 1001 of points at which income is in equilibrium with reference to the real market and money market are the IS and LM ourves, respectively.

The equation of the IS ourve is:

$$
x=\frac{C_{0}+I_{0}-M_{0}+\bar{X}}{1+m-0-b}-\frac{h 1}{1+m-c-b}
$$

The equation of the $L M$ curve is given by the following expression when

$$
M^{(T)}=v_{1} Y
$$

and

$$
\begin{gathered}
\mathbb{v}^{(a)}=v_{0}-v_{2} 1: \\
Y=\frac{m^{(s)}-v_{0}}{v_{1}}+\frac{v_{2}}{v_{1}} \cdot 1
\end{gathered}
$$

The simultaneous solution of these two equations yields the equilibrium level of income, Ye.

Now, let us consider again the autonomous inorease in the demand schedule for imports financed by a. ldle funds, b. by bank debts, c. domestic reduction on investment spend-
ing, d. reduction on domestic consumption.
a. In this case the position of IS curve will remain unaffected, since the real market does not get disturbed. Most likely no movement will be noticed along the LM curve, either.
b. Nelther of the components of $\vec{M}^{(s)}$ is affected, nor IS. Ye remains the equilibrium level.
o. and d. In these cases, the IS curve moves to the left ($I^{\prime} S^{\prime}$) and the equilibrium level of income is negative1y affected.

If a apontaneous increase ocours in the demand for exports, assuming perfectly elastic supply of resources, effective demand will rise in the first round by the amount of the increase.

So far, however, as an increase in exports is defined to include exports of goods and services plus securities, not all of exports may be expected to be income-creating. Let us define k the fraction of exports that is income-creating. Similarly, let σ mean the fraction of imports that represent a leakage from the income stream.

The income-determination identity, after taking into account the two new parameters, k and σ, becomes;

$$
\begin{equation*}
Y=C+I+k C X-\sigma M \tag{7}
\end{equation*}
$$

and the equilibrium level of income is given by;

$$
\begin{equation*}
Y=\frac{1}{1-c-b+\sigma m} \cdot\left(C_{0}+I_{0}-\sigma M_{0}+k X\right) . \tag{8}
\end{equation*}
$$

On the basis of this last equation, we can determine the effects on income of changes in the relevant parameterg and variables.

A change in autonomous imports w1ll affect the equilibrium level of income, as given by:

$$
\begin{equation*}
\Delta Y=\frac{-\sigma}{1-\sigma-b+\sigma m} \quad \Delta M_{0} \tag{9}
\end{equation*}
$$

We assume that the multiplier is positive. The change in income, Equation 9 , then is negative if ΔM_{0} is positive and vioe versa.

A change in the slope of the import function, Δm, affects income as indicsted by:

$$
\begin{equation*}
\Delta Y=\frac{-\sigma}{1-c-b+\sigma m} \quad \Delta m Y \tag{10}
\end{equation*}
$$

If $\Delta_{\text {m }}$ is positive, income decilnes, if Δ m is negative Income increases.

It is then Ilkely for σ to be $0<\sigma<1$. For 1 ts value to be equal to unity, one ought to assume a change in imports resulting from a change in the relative prices of identical or close substitute commodities produced both at home
and abroad. σ would equal zero if the change in the demand for imported commolities is financed entirely at the expense of idle funds and bank debts.

A change in the parameter σ, indicating a change in the degree of substitution between imports and domeatic expenditure, is desoribed by the equation:

$$
\begin{equation*}
\Delta Y=\frac{-1}{1-c-b+\sigma m} \cdot \Delta \sigma\left(M_{0}+m Y\right) \tag{11}
\end{equation*}
$$

If Δ_{σ} is negative income inoreases, if it is positive Income decreases.

A change in exports resulte in:

$$
\begin{equation*}
\Delta Y=\frac{1}{1-c-b+\sigma m} k \Delta X \tag{12}
\end{equation*}
$$

Which has the sign of Δx.
If the fraction of income-creating exports over the total of exports changes, then

$$
\begin{equation*}
\Delta X=\frac{1}{1-0-b+\sigma m} \Delta k X \tag{13}
\end{equation*}
$$

Which has the sign of Δk, The above expressions, Equations 9 through 13 are, naturally conditioned by a ceteris paribus assumption.

The effects on income of simultaneous equal ohenges in exports and imports were not olearly analyzed, until falriy
recently.* Thus Stolper (34) writes:
"...A simultaneous inorease in imports and exports will have an expansionary effect if it is not offset by downard changes in the average propensity to consume domestic goods... The best way to describe the effects of trade balances is by means of the marginal propensity to import. The best way of describing the effect of the volume of trade as aistinct from the trade balances 18 by means of the average propensity to spend. For a discussion of the full effects of foreign trade on national income both average and marginal propensities have to be considered".

Let us now consider the effect of equal changes in exports and 1mports on Y. $\Delta X=\Delta M$ ex hypothes 1; ΔY then 1s given by:

$$
\begin{equation*}
\Delta Y=\frac{k-\sigma}{1-c-b+\sigma m} \cdot(\Delta X) \tag{14}
\end{equation*}
$$

Equation 13 easily leads to the following taxonomic analysis. First let us assume, for simplioity $k=1$, so that

$$
\begin{equation*}
Y=\frac{1-\sigma}{2-c-b+\sigma m} \quad \Delta X \tag{14.}
\end{equation*}
$$

*Haberler argued in his Erosperity and Depression that only an increase in exports had expansionary effects on the national income. The subsequent discussion, Stolper (34), Polak (29), clarified many obscure points. It seems however that the rigorous and simple methodologioal approach to the problem beoame possible after the publioation of Haavelmo's study (9) on fisoal polioy.

If the balanced change is a decline in trade, the above equation becomes

$$
\begin{equation*}
\Delta Y=\frac{\sigma-1}{1-c-b+\sigma m} \Delta X \tag{15}
\end{equation*}
$$

If the change represents an increase in trade, Equation 13 remains unchanged.

In case of Equation 14 if the substitution between domestio and foreign commodities $i s$ indioated by $\sigma>1$, income w111 increase, wh1le it will decrease in case of Equation 13.

In other words, if the degree of substitution between domestic and foreign commodities is greater than unity a dealine in foreign trade will lead to a rise in income and an expansion in foreign trade w1ll lead to a deorease in income.

If the elsaticity of substitution is unity, the volume of trade, In case of balanced changes will have no effect on income, so that $\Delta Y=0$, the multiplicand being zero.

If the degree of substitution is less than unity, which may be considered to be the noraal case, an expansion in balanced foreign trade will lead to an increase in income and a decline in it will result in contraction of Y, in the first case by being positive Equation 13 in the second y being negative Equation 14.

Regarding the affect of simultaneous changes in exports and imports of different relative magnitudes it can be stated In general, on the basis of the Equation 16 below, that:

$$
\begin{equation*}
\Delta Y=\frac{k \Delta X-\sigma \Delta M}{1-\sigma-b+\sigma m} \tag{16}
\end{equation*}
$$

If the ohange in the volume of trade is positive, income inoreasos if

$$
\frac{k}{\sigma}>\frac{\Delta M}{\Delta X}
$$

decreases if

$$
\frac{k}{\sigma}<\frac{\Delta M}{\Delta X}
$$

and remalns unaffected 17

$$
\frac{k}{\sigma}=\frac{\Delta \mu}{\Delta X}
$$

If the change in the volume of foreign trade is negative income will increase, if

$$
\frac{k}{\sigma}<\frac{\Delta M}{\Delta X}
$$

decrease if

$$
\frac{k}{\sigma}>\frac{\Delta M}{\Delta X}
$$

and remain unchanged if

$$
\frac{k}{\sigma}=\frac{\Delta M}{\Delta X} .
$$

Dynam1c approach

Up to this point we were not concorned with timing the variables of the simple model of an open econom. It 1s, however, evident that the relationships described above must involve time $1 n$ an essential way in any attempt to explain more closely the behavior of an economy. This makes for a dynamic or, to use Tintner's more modest term, a non-statio model.

The effects of lage in the veriables of a model have been investigated in both theoretieal and econometric atuales and their policy implications indicated.

Whatever the kind of lags one may introduce, one can state in general, that the equilibrium value of income, if such a value exists, is determined by the coefficients of the behavioral functions and is not affected by the lags.

The latter give rise to various types of pathe towards equilibrium - if again the coefficients of the equations permit an equilibrium - generating damped cycles or conditioning a smooth asymptotic approach to 1 t.

The independence of the equilibrium from lags can be very easily seen in the following manner. Let it be supposed
thet a set of n equations describing an economy, is finally incorporated by substitution in the income-determination equation, being a non-homegenous difference equation of nth degree

$$
y_{t}=c_{1} y_{t-1}+c_{2} y_{t-2}+\ldots+o_{n} y_{t-n}+A_{t}
$$

Let it be now assumed that equilibrium exists, being equal to \vec{y}. Then this value can be expressed by substituting it for the variables in the above equation and solving explicitly for $1 t$:

$$
\bar{y}=\frac{A}{1-c_{1}+c_{2}+\cdots-c_{n}}
$$

The multiplier of the system exists if the expression

$$
\left(1-c_{1}-c_{2} \ldots-c_{n}\right)>0
$$

The multiplier, then as a finite parameter, depends on the determinateness of the equilibrium of the system. It follows therefrom that lags are not needed in order to assess the ultimate effect on inoome of a change in the variables concerned. Nevertheless, it is very interesting to see how the behavior of the model is affected by ite foreign sector.

Let us start by restating the income-determination equation with 1 ts components dated

$$
\begin{equation*}
x_{t}=c_{t}+I_{t}+X_{t}-n_{t} \tag{lb}
\end{equation*}
$$

The Robertsonian assumption will be made that present consumption is a linear function of the previous-period income.

$$
\begin{equation*}
c_{t}=o Y_{t-1} \tag{2b}
\end{equation*}
$$

The treatment of investment gives ground for many classifications. So, current investment can be expressed as a function of the previous-period level of income or by an acoeleration equation. In the latter case, the order of lags may serve as the basis of further distinction, namely, between models of the Harrod-Domar type and Samuelson-Hansen-H1cks-Metzler type.

The Harrod-Domar type of investment function admits of one lag

$$
\begin{equation*}
I_{t}=b\left(y_{t}-y_{t-1}\right) \tag{3b}
\end{equation*}
$$

where b is the acceleration coefficient.
It $1 s$ to be noted that Equation 3 b is called a HarrodDomar type investment function only on the basis of the order of lags. If the hypothesis is that ourrent investment is induced by changes in income, this does not reflect the spirit of Domars contribution. The correct interpretation of Equa-
tion 36 according to the model produced by Domar would be: I_{t} is the exogenous variable; ourrent investment I_{t} increases capacity by the ratio

$$
I_{t} \frac{\lambda}{b}
$$

which, if fully utilized, equale ΔY or

$$
Y_{t}-Y_{t-1}
$$

Then,

$$
I_{t}=b \Delta Y,
$$

is a relationsh1p in which the direction of causation is: given investment, the potential change in income is determined.

The import function may assume the form of the consumption function

$$
\begin{equation*}
M=m Y_{t-1} \tag{4b}
\end{equation*}
$$

Substituting the above equations into Equation $2 b$, we get

$$
\begin{equation*}
Y_{t}=c Y_{t-1}+b\left(Y_{t}-Y_{t-1}\right)+X_{t}-m Y_{t-1} \tag{5b}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{t}=\frac{a-b-m}{1-b} y_{t-1}+X_{t} \tag{6b}
\end{equation*}
$$

Equation 6 b is a first-order, linear, non-homogeneous difference equation. The solution to its homogeneous part 1:

$$
\begin{equation*}
y_{t}^{(H)}=Y_{0}\left(\frac{a-b-m}{l-b}\right)^{t} \tag{7b}
\end{equation*}
$$

where Y_{0} is the initial condition. It is the homogeneous part that affects the stabllity of the system.

On the basis of Equation 7 b , we observe that there are several possible behavior patterns of the system.

If the expression in parenthesis is greater than unity, income grows exponentially over time.

If it is equal to unity, the contribution of the homogeneous part is Y_{0} and income will be ultimately determined by the additive non-homogeneous component X_{t}.

If the expression in parenthesis is between zero and unity, the initial condition loses in importance over time and income approaches some multiple value of the exports component Xt.

$$
y_{t} \rightarrow X_{t}\left[\frac{I-\left(\frac{c-b-m}{1-b}\right)^{t}}{I-\left(\frac{c-b-m}{1-b}\right)}\right] \xrightarrow[d s t \rightarrow \infty]{\longrightarrow} x_{t}\left[\frac{1}{1-\frac{c-b-m}{1-b}}\right]
$$

If the expression in question is negative, osoillations are bound to occur, which will be either explosive, if its absolute value is greater than unity, or damping for absolute values less than unity.

One can now concentrate on the role of the parameter m, the marginal propensity to import, as to the possible behevior patterns of the model.

If income is to grow exponentially, m must satisfy the condition

$$
m<c-1
$$

In order for income to depend with respeot to its ultimate equilibrium value on its autonomous component X_{t}, given X_{0}, the condition

$$
m=0-1,
$$

should be satisfied.
If income is to depend ultimately on 1ts autonomous part x_{t}, the influence of the inditial condition vanishing over time, the following two conditions must be fulfilled simultaneously:

$$
\begin{aligned}
& m>0-1 \\
& m<0-b
\end{aligned}
$$

If the system explodes in oscillations,
$m>1-c+2 b$.
The model does not include any bullt-in stabliszers. In order to preserve economic sense, one may disregard the cases of explosive osoillations and exponential growth, both being perfectly unrealistic.

For an economy to be perfectly rigid, without multiplier effects, the marginal propensity to import is seen to be negative and equal to minus the propensity to save, if as normally assumed the marginal propensity to consume is less than unity and greater than zero.

If an economy is less rigid, allowing for multiplier effects, the marginal propensity to import wust be larger than minus the marginal propensity to save but less than the difference between the marginal propensity to consume and the accelerstion coerfioient.

Although these results are not striking at all as intuItively obvious, it can be said that they correspond to a "reasonable" type of economy. Por such a type may be concelved as tending towards some stagnation level of income, unless autonomous injeotions pull it ahead. This is the oase of the conditions discussed last. The values of mas inited by the conditions implying such an economy are acceptable, if one considers the results of some empirical
work done in this fiela, as will be seen later. So, if one assumes a marginal propensity to consume of .85 and an acceleration coefficient of .80, within the framework under discussion, the marginel propensity to import must be larger than -.15 and less than .5 . Qiven the marginal propensity to consume, the higher is the coefficient describing the response of investors to 1 noome changes, the smaller the marginal propensity to import has to be in order to meet the requirements of such an economy, and vice versa. The higher however 18 the marginal propensity to consume, given an acceleration coefficient, the larger are the possible values of \mathbb{C} compatible with the behavior pattern assumed.

It is intended now to consider a model of an open economy in which investment ia a function of the change in income from period t-2 to period t-1.

As indicated earlier, there is a number of versions of this type of models referring to a closed economy.

The Samuelson-Hansen type, Samuelson (31), follows the Austrian tradition in essuming that investment provides for consumption goods only.

The investment function is given in terms of the ohange in consumption at the relevant time periods and through the lagged consumption function of the Robertsonlan type one can obtain an expression in terms of income.

Netzler (20) and Hioks (23) work with an investment function directiy in terms of inoome changes. In this model we follow Metzler and H1oks. The income identity ia:

$$
\begin{equation*}
y_{t}=c_{t}+I_{t}+x_{t}-M_{t} \tag{10}
\end{equation*}
$$

The consumption function is again of the Robertsonian type,

$$
\begin{equation*}
c_{t}=c Y_{t-1} \tag{2c}
\end{equation*}
$$

Before writing the inveatment function, one must make explicit the essumptiona:
a. Labor $1 e$ redundant, in the Harrod-Domar fashion.
b. Capital is used in fixed proportions.
C. There is some optimal oapital-output ratio. The investment function is,

$$
\begin{equation*}
I_{t}=b\left(Y_{t-1}-Y_{t-2}\right) \tag{3c}
\end{equation*}
$$

The import function assumes the same form again,

$$
\begin{equation*}
n_{t}=m Y_{t-1} \tag{40}
\end{equation*}
$$

Substituting into Equation Ic, it obtains

$$
\begin{equation*}
Y_{t}=(c+b-m) y_{t-1}-b Y_{t-2}+X_{t} \tag{5c}
\end{equation*}
$$

Assuming that equilibrium exists and is y *,

$$
Y_{t}=Y^{*}=\frac{1}{1-c+m} X_{t}
$$

which represents the familiar multiplier expression. It is to be noted that the acceleration coefficient does not appear in the equilibrium expression and consequently it does not contribute to its value.

Again, the non-homogeneous part of Equation $5 c X_{t}$ can be proven not to influence the behavior of the system.

It is the homogeneous part of Equation 50 that determines the time path of income depending on the roots of its characteristic equation.

Let a solution be assumed to be:

$$
\begin{gathered}
y_{t}^{(H)}=(c+b-m) y_{t-1}-b y_{t-2} \\
y_{t}^{(H)}=z^{t} .
\end{gathered}
$$

The characteristic equation then is:

$$
\begin{equation*}
z^{2}-(c+b-m) z+b=0 \tag{6c}
\end{equation*}
$$

The value of z is given by the formula

$$
\begin{equation*}
z=\frac{c+b-m \pm \sqrt{(c+b-m)^{2}-4 b}}{2} \leqslant 1 \tag{7a}
\end{equation*}
$$

One observes that the roots will have an imaginary part if the discriminant is less than zero.

If the discriminant is zero the one root is real and gives rise to behavior patterns as determined by:

$$
Y_{t}=\left(A_{t}^{n}+B\right) z_{0 .}^{t} \quad(n=1,2, \ldots)
$$

Where A and B are constants determined on the basis of initial conditions, and z_{0} is the value of the root.

The first problem then is to concentrate on whether

$$
\frac{c+b-w}{2} \leqslant 1
$$

The system explodes if the above expression is greater than unity. For this to heppen,

$$
a+b-2>m
$$

In this unrealistic oase the valuee of m are restricted most 11kely to negative ones.

If $m=c+b-2$, when the root is unity, the system progresses or declines inneariy if $n=1$ depending on whether the initial conditions determine a positive or a negative value for A, or exponentially for $n>1$.

If the root is less than unity,

$$
m>c+b-2
$$

For given positive values of the marginal propensity to consume and the acceleration coefficient, it is evident that within a certain range the larger the marginal propensity to import the greater is the stabilizing influence.

In order for explosive oscillations to be avoided the condition below has to be fulfilled no matter how large n 15:

$$
o+b>m a+b-2
$$

The values of the marginal propensity to import as restrained by the last condition for stability are given quite a comfortable range.

Now suppose that the discriminant is negative. In this case the solution to the homogeneous part of the income determination equation will be a pair of complex conjugate numbers.

Let

$$
\frac{\sqrt{(c+b-m)^{2}-4 b}}{2} \equiv 1 D \text { and } c+b \equiv E .
$$

Then,

$$
\begin{aligned}
z & =\frac{E-m}{2} \pm 1 D \\
z_{1} & =\frac{E-m}{2}+1 D
\end{aligned}
$$

$$
z_{2}=\frac{E-m}{2}-1 D
$$

and

$$
x_{t}^{(H)}=A\left(Z_{1}\right)^{t}+B\left(Z_{2}\right)^{t} .
$$

The last expression becomes:
$Y_{t}^{(H)}=A\left[\sqrt{\left(\frac{E-m}{2}\right)^{2}+D^{2}}\right]^{t}(\operatorname{cost} \theta+1 \sin t \theta)+$

$$
B\left[\sqrt{\left(\frac{s-m}{2}\right)^{2}+D^{2}}\right]^{t}(\cos t \theta-1 \sin t \theta)
$$

Write

$$
\sqrt{\left(\frac{B-m}{2}\right)^{2}+D^{2} \equiv B, \quad \text { the modulus: }}
$$

Then,

$$
Y_{t}^{(H)}=R^{t}[(A+B) \quad \operatorname{cost} \theta+1(A-B) \sin t \theta]
$$

which is the final solution.
If the discriminant is positive,

$$
y_{t}^{(H)}=A\left(Z_{1}^{(4)}\right)^{t}+B\left(Z_{1}^{(4)}\right)^{t}
$$

Where Z_{1}^{*} and Z_{2}^{*} are the two roots. In each of the above
cases A and B are arbitrary constants determined by the initial conditions. The non-homogeneous part will at most be of the form

$$
y_{t}^{(P)}=K t^{n} \quad(n=0,1 \ldots)
$$

Where n is not greater than the order of the equation under consideration. The arbitrary constants A and B are assigned speolfied values after a particular solution has been found. The interpretation of the solutions is as follows: Conslaer first the complex roots case. The factor

$$
(A+B) \operatorname{cost} \theta+i(A-B) \operatorname{sint} \theta
$$

repeats itself oscillatorily. By itself, it neither explodes nor dies out. Its presence in the solution of a system indicates that fluotuations will occur. The nature of the oscillations in terms of trend $w 111$ depend on the factor R^{t}. If $R=1$, it will have no influence at all on the behavior of the model and the periodic movement as conditioned by the trigonometric term will perpetuate itself. If

$$
B>1, B^{t} \longrightarrow \infty \text { as } t \longrightarrow \infty .
$$

The situation is explosive the rluotuations becoming intensifiod.

If

$$
B<1
$$

the fluctuations become damped over time converging to an equilibrium path.

It is the latter case which appears more realistic. The model may exhibit this kind of stability as it will be ssen in examining the components of the modulus f .

$$
B=\sqrt{\left(\frac{E-m}{2}\right)^{2}+\frac{(E-m)^{2}-4 b}{4}}=\sqrt{\frac{(E-m)^{2}-2 b}{2}}
$$

It is very 11 kely that the numerator inside the radical is greater than zero and less than unity in most cases except possibly for very short periods.

For a positive modulus, given an aggregate marginal propensity to expend, the larger the marginal propensity to import, the shorter the time period needed for the income path to converge to the equilibrium path.

The partioular solution adds elther a constant terin or a trend term. No essential modifications in the conclusions are needed.

If the discriminant is positive, and both roots

$$
0<\mathrm{z}_{1}^{*}, \mathrm{z}_{2}^{*}<1
$$

then it is the particular solution which determines the
equilibrium solution. Negative roota give rise to oscillat1ons which are explosive if the dominant root has an absolute value greater than undty. If the dominant root is unity a constant becomes ultimately the solution consisting of the partioular solution and the coefficient of the dominant root.

In general, there is a $c-b-m-s p a c e$ within which any combination of c, b, m-values corresponding to any point In a subspace bounded by the surface

$$
(c+b-m)^{2}-4 b=0
$$

gives rise to oscillatory movements, elther tending and reaching eventually an equilibrium value depending on whether the dominant root hes absolute value less than undty, or exploding when the dominant root 1 g greater than 1 . Nonoscillatory behavior arises from combinations of the parameter values above the mentioned surface, but again stability requires the dominant root to be less than unity.

Upon observing the formula of the second-degree polynomial giving the roots of the characteristic equation of the system, one sees that the parameter massumed to be positive, is a stabilizer of the model reducing the absolute value of the roots for realistlc values of c and b.

The above conclusions about the role of the marginal propensity to import in dynamic systems constructed on the
basis of the acceleration principle need no essential modification if we are to consider adaitional hypotheses such as the ones leading to a flexible accelerator Ferguson (7) or a varlable one.

A TWO-COUNTRY INTERNATIONAL SYSTEM

In what preceded a static model of an open econowy with sectors, consumption, investment and foreign trede was set up.

The income-oreating mechanism of exports was examined In some detall defined broadly to include exports of domestic assets or imports of capital and the income-leaking effects of imports defined broady to include imports of form eign assets or exports of capital. After a static-macroeconomic-equilibrium situation was presented the dynam10 veraion of this model was considered with view on the effects of the marginal propensity to import on macroeconomic stability, oeteris paribus.

Now, it is proposed to set up a simple model of a twocountry international economic system and examine the effects on income of some autonomous shocks.

Up to this point the export component of income was a datum. Now that an intemational economio system is considered, exports will be incorporated into the model as an endogenous element.

The autonomous shooks that may be examined fall broadIy into three basic oategories:
a, There is an internal change to be considered occurring in the level of a country's effective demand as a
function of that country's income.
b. At a given level of income, qutonomous disturbances may take place in the form of shifts in the distribution of expenditures on goods and servioes produced by one of the two countries to the goods and services produced by the other.
c. Changes in the movements of capital indicating inoreases or decreases in foreign lending or changes in unilateral transactions such as aid or capital transfers etc.

The setting of the inquiry is characterized egain by a substantial amount of unemployment of resouroes and consequentiy elastic supply of them within a wide range; by money-wage inflexibility and by suffioient reserves in order to rule out changes in the exchange rates. The aggregate production function of the economies is assumed to be homogeneous of the first degree.

A consumption function w111 be postulated in its general form, an investment function with argument the level of income, and the expressions relating to the foreign sector of each country. In the notation number subscripts are affixed to variables referring to the second country.

So, $C=C(Y)$ is the consumption function of the first country, $C_{1}\left(X_{1}\right)$ the consumption function of the other, $I(X)$ and $I_{1}\left(Y_{1}\right)$ the investment funotions, respectively, relating
the amount of investment to the level of income of each country, $M(Y)$ is the import function of the firet country and export function of the other while $M_{1}\left(Y_{1}\right)$ is the export function of the first country and the import function of the second country. The above equations determine the equilibrium position of the system, provided that the stability conditions are satisfied.

The equilibrium of any static economic system is connected with the assumptions underlying the corresponding dynamio system; namely it is not possible to know the nature of this equilibrium unless postulates are specified about the dynamic behavior of the system.

This is the so-called correspondence prinoiple.
In general, the formulation of an economio statio system is followed by a comperative statics question. In other words, the values of the variables determined by the static system are differentiated with respect to the parameters. The sign of the derivatives will indicate the direction of the change in the variables as a consequence of a small displacement in the parameters. In many cases, however, the sign cannot be determined unambiguously, beause of missing information about the functional relationships entering into the system.

The correspondence principle can then be used in order to provide this needed information.

The dynamic system can be derived in the oase of this model if the following assumptions are made:

1. The consumption of goods and services lags one period behind income - and hence the imports for consumption purposes, which are the only kind of imports assumed to take place.
2. Entrepreneurial decisions with respect to investment are based on expectations formed on the ground of information about the level of income of the previous period. The dynamic model then is:

$$
\begin{align*}
& c_{t}=C\left(Y_{t-1}\right) \tag{1}\\
& I_{t}=I\left(Y_{t-1}\right) \tag{2}\\
& M_{t}=M\left(Y_{t-1}\right) \tag{3}\\
& C_{1 t}=C_{1}\left(Y_{1 t-1}\right) \tag{4}\\
& I_{1 t}=I_{1}\left(Y_{1 t-1}\right) \tag{5}\\
& M_{1 t}=M_{1}\left(Y_{1 t-1}\right) \tag{6}
\end{align*}
$$

From the definition of income, the above equations are consolidated into:

$$
\begin{equation*}
Y_{t}=c\left(Y_{t-1}\right)+I\left(Y_{t-1}\right)+M_{1}\left(Y_{1 t-1}\right)-M\left(Y_{t-1}\right) \tag{7}
\end{equation*}
$$

$$
y_{1 t}=c_{1}\left(Y_{1 t-1}\right)+I_{1}\left(Y_{1 t-1}\right)+M_{1}\left(y_{2 t-1}\right)+M\left(Y_{t-1}\right)
$$

The explicit solutions to Equations 7 and 8 will enable one to state the conditions which the functional relationships must fulfill for the international economic system to be stable.

Expanding Equations 7 and 8 in a Taylor series and dropping all non-linear terms it obtains:

$$
\begin{align*}
& Y_{t}-Y_{0}=C\left(Y_{0}\right)^{\prime}\left(Y_{t-1}-Y_{0}\right)+I\left(Y_{0}\right)^{\prime}\left(Y_{t-1}-Y_{0}\right) \tag{9}\\
& +M_{1}\left(Y_{10}\right)^{\prime}\left(Y_{1 t-1}-Y_{10}\right)-M\left(Y_{0}\right)^{\prime}\left(Y_{t-1}-Y_{0}\right)
\end{align*}
$$

and

$$
\begin{aligned}
& Y_{1 t}-Y_{10}=C_{1}\left(Y_{10}\right)^{\prime}\left(Y_{1 t-1}-Y_{10}\right) \\
+ & I_{1}\left(Y_{10}\right)^{\prime}\left(Y_{1 t-1}-Y_{10}\right)+M\left(Y_{0}\right)^{\prime}\left(Y_{t-1}-Y_{0}\right) \\
- & M_{1}\left(Y_{10}\right)^{\prime}\left(Y_{1 t-1}-Y_{10}\right),
\end{aligned}
$$

where $C\left(Y_{0}\right)$ ' indicates first differentiation and evaluation at Y_{0}, and similarly for the other terms.

Equations 9 and 10 are difference equations whose solutions can be obtained in the usual way considering the derivatives of the expressions as constant coefficients.

In case no trade existed between the two countries the income path in each country is given by the equations

$$
\begin{gathered}
Y_{t}=Y_{0}+C\left(Y_{0}\right)^{\prime}+I\left(Y_{0}\right)^{\prime}\left(Y_{t-1}-Y_{0}\right) \\
Y_{1 t}=Y_{10}+c_{1}\left(Y_{10}\right)^{\prime}+I_{1}\left(Y_{0}\right)^{\prime}\left(Y_{1 t-1}-Y_{10}\right) .
\end{gathered}
$$

The solution to this equation is of the form:

$$
x_{t}=x_{0}^{*}+\left(x(0)-x_{0}\right)\left(C^{\prime}+I^{\prime}\right)^{t}
$$

where I' and C' are

$$
\frac{d I_{t}}{d Y_{t-1}}
$$

and

$$
\frac{\mathrm{d} c_{t}}{d y_{t-1}},
$$

respectively.
In order that the income path converges to some equilibrium value, ($C^{\prime}+I^{\prime}$) must be less than unity in absolute value which is the usual stability requirement, encountered throughout.

If country Y trades with the rest of the world in general in a way that its exports may be considered a datum, as assumed in the first section of this essay, the innear
difference equation obeys the same conditions for stability, the root now being, ($C^{\prime}+I^{\prime}-M^{\prime}$), where

$$
M^{\prime}=\frac{d M_{t}}{d Y_{t-1}} .
$$

In an economy then where laports are a positive function of income a large marginal propensity to import is likely to counterbalance the destabllizing effects of excesslve aggregate propensities to spend, or more correctly the higher is the foreign component in the aggregate propensities to spend, the stabler oeteris paribus the economy is bound to be.

In the general case however, where possible reactions of the rest of the world may be regarded essential, or in the case, more speolfically, of a two-country model where the flows of goods and services into either country are to a high degree interdependent, the time path of incomes, Y and Y_{1}, cannot be determined without taking into account the nature of the reactions in question. In formal terms, since again the dynamic behavior of the model is determined by the homogeneous paths of the equations, for small shocks or deviations from the equilibrium - on the assump1t exists - the time path of Y and Y_{1} will be conditioned by the following expressions:

$$
\begin{align*}
& y_{t}^{(H)}=A_{p_{1}}{ }^{t}+B_{p_{2}}{ }^{t} \tag{11}\\
& y_{1 t}^{(H)}=C_{p_{1}}{ }^{t}+D_{p_{2}}{ }^{t} \tag{12}
\end{align*}
$$

where the $p^{\prime} s$ are the roots of the characteristic equation of the system.

The latter is given by the quadratic equation derived from Equations 9 and 10. In determinantal form:

$$
\left[\begin{array}{cc}
\left(C^{\prime}+I^{\prime}-M^{\prime}\right)-p & M_{1}^{\prime} \tag{13}\\
M^{\prime} & \left(C_{1}^{\prime}+I_{1}^{\prime}-M_{1}^{\prime}\right)-p
\end{array}\right]=0
$$

For stabllity, $p^{\prime} s<1$.
The necessary and sufficient conditions for this can be stated as follows:

$$
\begin{equation*}
\left(C^{\prime}+I^{\prime}-M^{\prime}\right)+\left(C_{1}^{\prime}+I_{1}^{\prime}-M_{1}^{\prime}\right)<2 \tag{1}
\end{equation*}
$$

which atates that if a system is stable the trace of the matrix of its coefficients - which is equal to the absolute value of the sum of the roots - must be less than the degree of the system, and

$$
\begin{equation*}
\left(C^{\prime}+I^{\prime}-M^{\prime}\right)\left(C_{1}^{\prime}+I_{1}^{\prime}-M_{1}^{\prime}\right)-M_{1}^{\prime} M<1 \tag{11}
\end{equation*}
$$

which means that the characteristic determinant of the ooefficients of the system - being equal to the product of the roots - must be less than unity.

The economic implications of the above formal condotions for stability can be readily derived. So, it is apparent that at least one country, must be stable, for the international economic system to be stable. If both countries are stable, this 1 mplies that the system as a whole is stable.

Roughly speaking, the instability of the one country can be absorbed by the stability of the other, provided that the latter s low propensities are low enough for the former' a excessive ones.

For instance, let it be assumed that

$$
\begin{gathered}
C^{\prime}+I^{\prime}-M^{\prime}=1.05, \\
M^{\prime}=.06
\end{gathered}
$$

and

$$
\begin{gathered}
C_{1}^{\prime}+I_{1}^{\prime}-M_{1}^{\prime}=.95 \\
M_{1}^{\prime}=.1 .
\end{gathered}
$$

For condition 11 to be satisfied

$$
(1.05)(.95)-(.06)(.1)<1
$$

Indeed, the propensities as assumed above imply a stable international system since

Clearly, condition il implies that given an excessive aggregate propensity to expend on domestically produced goode and services of the one country, the aggregate propensity to expend on domestically produced goods and services of the other country must be low, for international stability. The more excessive the magnitude of the former, the lower the magnitude of the latter must be. This is What is meant by the 1dea that the instability of the one country can be absorbed by the stablilty of the other provided the relevant propensity of the latter is low enough.

Here, the following point deaerves mention. It must be remembered that macroeconomic instability of one coumtry in the sense used in this essay results from an excess over unity of the aggregate propensity to expend on domestically produced goods and services. When this is the case, equilibrium is unattainable within an economically acceptable range, although it exists mathematioally, since the multiplier is a finite negative quantity. It follows, that it does not make sense to discuss the case of a country under these conditions and in the example used above the aggregate propensity 1.05 seems to lead to absurd re-
sults. This however is not so, because macroeconomic instability of a country in isolation does not necessarily imply macroeconomic instability of an international system where the variables of each country are determined simultaneously, a situation which is stated by oondition 11 above. In the real world, when one takes account of more variables which enter into the pioture, the equilibrium of the system is assurea by the movement of relative prices, and opposite international movements of capital, as well. In the above model, where only income effeots are considered, still equilibrium is possible under methematically stated conditions through the reperoussions on, and of, the forelgn sectors of the countries in question. Exeessive propensities to expend on domestic commodities in one country lead to increasea in income of the same country, on which the imports depend positively. Increased imports represent an increased leakage out of the olroular flow of the eoonomy in consideration and an injeotion into the ciroular flow of the economy of the other country. This interplay through the foreign sectors of the two economies makes it possible Por international equilibrium to be established, under the conditions explicitly stated above.

Whth the above information, one aan determine the features of the static system. The values of the variables at the equilibrium position will however not satisfy the val-
ues required for a new equilibrium, if this new equilibrium is possible, after shifts ocour in the parameters of the system.

It will now be examined how autonomous shocks affect the economies of the countries of the international eoonomic system.

It has already been indicated what types of shooks are going to be considered. Let first changes in the level of effective demand be taken into account. Such changes may be due to several general factors. An innovation, for instance, may affect the aggregate cost of a certain type of Investment moving the marginal-efficiency-of-capital schedule to the right by a distance a. Or any component of the cost of raising funds for investment, may be reduced, say, by an autonomous change in credit policy, followed by the same effect of shifting the marginal-efficiency-of-capital schedule positively.

Let it be supposed that such a shift occurs in country Y. Its investment funotion can be then written

$$
I=I(X)+a
$$

and the systam 1s:

$$
\begin{equation*}
Y=C(Y)+I(Y)+M^{\prime}\left(Y^{\prime}\right)-M(Y)+a \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
Y_{1}=c_{1}\left(Y_{1}\right)+I_{1}\left(Y_{1}\right)+m(Y)-n_{1}\left(Y_{1}\right) \tag{15}
\end{equation*}
$$

By differentiating Equations 14 and 15 with respect to a, it will be possible to trace the effect of the autonomous shook throughout the international eoonomy.

$$
\begin{align*}
& \frac{\partial Y}{\partial a}=\frac{\partial C}{\partial Y} \frac{\partial Y}{\partial a}+\frac{\partial I}{\partial Y} \frac{\partial Y}{\partial a}+\frac{\partial M_{1}}{\partial Y_{1}} \frac{\partial Y_{1}}{\partial a}-\frac{\partial m}{\partial Y} \frac{\partial Y}{\partial a}+1 \tag{16}\\
& \frac{\partial Y_{1}}{\partial a}=\frac{\partial C_{1}}{\partial Y_{1}} \frac{\partial Y_{1}}{\partial a}+\frac{\partial I_{1}}{\partial Y_{1}} \frac{\partial Y_{1}}{\partial a}+\frac{\partial M}{\partial Y} \frac{\partial Y}{\partial a}-\frac{\partial M_{1}}{\partial Y_{1}} \frac{\partial Y_{1}}{\partial a} . \tag{17}
\end{align*}
$$

The unknowns of the above system are

$$
\frac{\partial Y}{\partial a}
$$

and

$$
\frac{\partial Y_{2}}{\partial a},
$$

which measure the effect of a shift in the marginal-efflolency-of-capital schedule of the first country on the two countries' incomes. The other partial derivatives are the paremeters of the static system which are assumed to be know,

Upon, rearranging Equations 16 and 17, it obtains:

$$
\begin{align*}
& \left(1-c^{\prime}-I^{\prime}+M^{\prime}\right) \frac{\partial Y}{\partial a}-M_{1} \frac{\partial Y_{1}}{\partial a}-1=0 \\
& \left(1-c_{1}-I_{1}+M_{1}\right) \frac{\partial Y_{1}}{\partial a}-n_{1} \frac{\partial Y}{\partial a}=0 . \tag{171}
\end{align*}
$$

In matrix notation, Equation 16^{\prime} and 17^{\prime} become:

$$
\left[\begin{array}{rr}
1-c^{\prime}-I^{\prime}+M^{\prime} & -M_{1}^{\prime} \tag{18}\\
-M^{\prime} & I-C_{1}^{\prime}-I_{1}^{\prime}+M_{1}^{\prime}
\end{array}\right]\left[\begin{array}{l}
Y \\
Y_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

where

$$
C^{\prime}=\frac{\partial C}{\partial Y}
$$

etc.,

$$
c_{1}=\frac{\partial C_{1}}{\partial Y_{1}}
$$

etc.,

$$
Y_{a}=\frac{\partial y}{\partial a}
$$

and

$$
Y_{1 a}=\frac{\partial Y_{1}}{\partial a}
$$

Solving for the unknowns by Cramer's Rule, one geta:

and

$$
\begin{equation*}
Y_{1 a}=\frac{M^{1}}{D} \tag{20}
\end{equation*}
$$

where D is the determinant of the matrix of the system of coefficients

$$
\left|\begin{array}{lr}
1-C^{\prime}-I^{\prime}+M^{\prime} & -M_{1}^{\prime} \\
-M^{\prime} & 1-C_{1}^{\prime}-I_{1}^{\prime}+M_{1}^{\prime}
\end{array}\right|
$$

Two more sub-systems will now be examined referring to the seotors of each economy and the effects of the shift in the marginal-efficiency-of-capital schedule in question. The first sub-system 1s;

$$
\begin{gather*}
C^{*}=C(Y)-M(Y) \tag{21}\\
I^{*}=I(Y)+M_{1}\left(Y_{1}\right)+a \tag{22}
\end{gather*}
$$

Where C^{*} is defined to be the difference between aggregate consumption and consumption of imported goods and services.

$$
\begin{gather*}
C_{a}=C^{\prime} Y_{a}-M^{\prime} Y_{a}=Y_{a}\left(C^{\prime}-M^{\prime}\right) \\
I_{a}=I^{\prime} Y_{a}+M_{I}^{I} Y_{1 a}+1
\end{gather*}
$$

Where

$$
c_{a}^{a}=\frac{\partial_{C w}}{\partial a}
$$

and

$$
I_{a}^{*}=\frac{\partial I^{*}}{\partial a},
$$

the effects namely of the shift on the difference between aggregate consumption and consumption of forelgn commodities and on investment expenditures, respectively.

Substituting into Equation 21' the value of Y_{a} from Equation 19, we have

$$
\begin{equation*}
C_{a}=\left(C^{\prime}-N^{\prime}\right) \frac{1-C!-I_{1}+M_{2}^{\prime}}{D} \tag{23}
\end{equation*}
$$

Substituting into Equation 22^{\prime} from Equations 19 and 20 for the values of Y_{a} and Y_{a} respectively, we obtain:

$$
\begin{equation*}
I^{*}=I^{\prime} \frac{1-C_{1}^{\prime}-I_{1}^{\prime}+M_{1}^{\prime}}{D}+M^{\prime} \frac{M^{\prime}}{D}+1 \tag{24}
\end{equation*}
$$

Similarly, the sub-system of the sectors of the other country is:

$$
\begin{align*}
& c_{1}^{\#}=c_{1}\left(Y_{1}\right)-m_{1}\left(Y_{1}\right) \tag{25}\\
& I_{1}^{*}=I_{1}\left(Y_{1}\right)+n(Y) \tag{26}
\end{align*}
$$

Going exactly through the steps of the immediately previous case, the following results are derived:

$$
\begin{gather*}
c_{1 a}=C_{1} y_{1 a}-M_{1}^{1} Y_{a}=Y_{1 a}\left(C_{1}^{1}-M_{1}\right) \tag{25'}\\
I_{1 a}=I_{1}^{\prime} y_{1 a}+M_{a} Y_{a} \tag{1}
\end{gather*}
$$

and

$$
\begin{gather*}
C_{1 a}^{M_{1}}=\frac{M^{\prime}}{D}\left(C_{1}^{\prime}-M_{1}^{\prime}\right) \tag{27}\\
I_{1 a}^{\prime}=I_{1}^{\prime} \frac{M^{\prime}}{D}+M_{1}^{\prime} \frac{1-C_{1}^{\prime}-I^{\prime}+M^{\prime}}{D}=M^{\prime} \frac{1-C_{1}^{\prime}+M_{1}^{\prime}}{D} . \tag{28}
\end{gather*}
$$

Pormal expressions are thus obtained about the effects of an autonomous shock of the type described on the two economies Y and Y_{2} and the sectors which were taken to constitute them.

In the attempt to evaluate these effects, one meets the difficulty of not knowing the sign of the determinant D.

One can however get out of this difficulty by assuming stability of the two economies when no foreign trade takes place, so that $\left(1-C^{\prime}-I^{\prime}\right)$ and $\left(I-C_{1}^{1}-I_{1}\right)$ are both
greater than zero and less than unity. In this case $D>0$. As soon as any ambiguities about the sign of D is done away with, it is possible to estimate the direction of the changes in the variables.

The change in the income of the country which experienced the shock is positive, as expeoted. Equation 19 represents the multiplier with respeot to the shift. Ceteris paribus, the greater the aggregate leakage of the second country, being the numerator of the BHS term in Equation 19, the larger the increase in the first country's income consisting of the sum of "foreign repercussions" through inoreased exports induced by the second country's high propensity to import.

Under the condition that the determinant is positive, the income of the second country will increase, if the marginal propensity to import of the first country is positive. This can be thought of as being the normal case. If m^{t} is negative, Y_{1} decreases, the economic reason being the reducof Induced exports of the second country as a consequence of first country's negative import function.

Equation 23 tells one what will happen to the consumption of domestically produced goods and serviees of the first country. Under the specified conditions, it increases since by definition

$$
c^{\prime}>n^{\prime}
$$

Investment rises in country Y for reasonable values of the parameters as combined in Equation 24.

Consumption of domestioally produced goods and services rises in country Y_{1}, too, if the first country's marginal propensity to import is positive. This result apparently works via incresses in income which induce increases in consumption of domestio commodities. (Equation 27)

The same can be said about Equation 28 investment expendstures in the second country.

The above results refer to ultimate equilibrium values made up by all induced changes in the varlables as a consequence of the autonomous shock. For instance, let the following values be assumed:

$$
C^{\prime}=.85, M^{\prime}=.05, I^{\prime}=.10, C_{1}^{\prime}=.81, M_{1}^{\prime}=.01, I_{I}^{\prime}=.10 .
$$

Then

$$
D=.0095
$$

and the income change of the country in which the shock originated,

$$
x_{a}=10.5
$$

while the income change in the other country,

$$
\mathrm{Y}_{1 a}=5.2 .
$$

$$
C_{a}^{*}=1.2, I_{a}^{*}=2.10, C_{1 \mathrm{a}}^{*}=4.16 \text { and } I_{1 \mathrm{a}}^{*}=1.57 .
$$

All expressions whose sign was dealt with are "multipliera" and various terms asn be used to refer to them. This however would be pointless, since any marginal relationship is a multiplier and there is no end to the number of such relationsh1ps that can be derived from economic models.

The other kind of shock which may be considered is an increase in the average propensity to consume domestically produced goods and services followed by no changes in the average propensities of the other functions. Since such a change is represented by an additive constant in the consumption function, it is evident by induction that similar results to those of a shift in the marginal-efficiency-ofcapital sohedule hold with respect to the same variables.

This however might sound somewhat strange in an economic sense. Of course, in the mathematical model of the international economic system under consideration there are no functional relationships desoribing the oapacity effect of investment and relating deviations from full-capaoity output to investment decisions. The model, being a comparative statics one, gives information only as regards transmissions of income leading to a new equilibrium position.

Since the formal aspect of an increase in the average propensity to consume domestioally produced commodities are
identical to those of an increase in the marginal efficiency of capital, it is intended to turn next to the effect of a shift occurring in economy Y from domestic goods and services to foreign commodities. This shift can be represented by a negative parameter in the income-identity or a positive parameter in the import function of the country Y, and a positive parameter of equal obsolute value in the income identity of the second country. Let this parameter be μ.

$$
\begin{gather*}
Y=c(Y)+I(Y)-m(Y)-\mu+m_{1}\left(Y_{1}\right) \tag{29}\\
Y_{1}=C_{1}\left(Y_{1}\right)+I_{1}\left(Y_{1}\right)+m(Y)+\mu-M_{1}\left(Y_{1}\right) . \tag{30}
\end{gather*}
$$

Differentiating Equations 29 and 30 with respect to 1t obtains:

$$
\begin{align*}
& Y_{\mu}=c^{\prime} Y_{\mu}+I^{\prime} Y_{\mu}-n^{\prime} y_{\mu}+m_{1}^{\prime} Y_{2} \mu-1 \tag{1}\\
& Y_{2} \mu=c_{1} y_{1} \mu+I_{1} Y_{2} \mu+m^{\prime} y_{\mu}-m_{1}^{\prime} y_{1} \mu+1
\end{align*}
$$

where

$$
Y_{\mu}=\frac{\partial Y}{\partial \mu} .
$$

Bearranging terms, in matrix notation:

$$
\left[\begin{array}{ll}
1-C^{\prime}-I^{\prime}+M^{\prime} & M_{1}^{\prime} \tag{31}\\
n^{\prime} & 1-C_{1}^{\prime}-I_{1}^{\prime}+M_{1}^{\prime}
\end{array}\right]\left[\begin{array}{l}
Y \\
Y_{1}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Upon solving for the unknows Y_{\downarrow} and Y_{ψ} by Cramer's Rule:

$$
\begin{align*}
& Y_{\mu}=\frac{C_{1}^{\prime}+I_{1}^{\prime}-1-2 M_{1}^{\prime}}{D} \tag{32}\\
& X_{I_{\mu}}=\frac{1-C^{\prime}-I^{\prime}+2 M^{\prime}}{D} \tag{33}
\end{align*}
$$

where again D is the determinant of the matrix of the coefflcients of the system 31.

In order to determine the effects on the sectors of the economies, consider again the two sub-systems:

$$
\begin{align*}
& C^{*}=C(Y)-M(Y)-\mu \tag{34}\\
& I *=I(Y)+M_{1}(Y) \tag{35}
\end{align*}
$$

Differentlating Equations 34 and 35 with respect tom, the results derived are:

$$
\begin{align*}
& C_{\mu}^{\mu}=\left(C^{\prime}-M^{\prime}\right) Y_{\mu}-I \\
& I_{\mu}^{\prime \prime}=I^{\prime} Y_{\mu}+M_{I}^{\prime} Y_{1} \mu . \tag{35'}
\end{align*}
$$

Substituting into Equations 34^{\prime} and 35° from Y_{γ} and $X_{1} \mu$ from Equations 32 and 33:

$$
\begin{equation*}
C_{\mu}^{*}=\left(C^{\prime}-M^{\prime}\right) \frac{C_{1}+I_{1}-1-2 M_{1}^{\prime}}{D}-1 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{H}^{*}=I^{\prime} \frac{C_{1}^{\prime}+I_{1}^{\prime}-I-2 M_{1}^{\prime}}{D}+M_{1}^{\prime} \frac{I-C^{\prime}-I^{\prime}+2 M^{\prime}}{D} . \tag{37}
\end{equation*}
$$

In the same way, by differentiation of the other country's subsystem:

$$
\begin{align*}
& c_{1}^{*}=c_{1}\left(Y_{1}\right)-n_{2}\left(Y_{1}\right) \tag{38}\\
& I_{1}^{*}=I_{1}\left(Y_{1}\right)+M(Y)+\mu \tag{39}
\end{align*}
$$

with respect to p it obtains:

$$
\begin{equation*}
C_{1} \mu=\left(C_{1}^{1}-M_{1}^{1}\right) Y_{2} \mu \tag{38'}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1 \mu}=I_{2}^{1} Y_{2 \mu}+M^{\prime} Y_{\mu}+1 \tag{391}
\end{equation*}
$$

Upon substituting for Y_{μ} and $Y_{2 \mu}$ from Equations 32 and 33, we have:

$$
C_{1 \mu}^{a}=\left(C_{1}^{1}-m_{1}^{1}\right) \frac{1-C^{1}-I^{1}+2 M^{1}}{D}
$$

and

$$
\begin{equation*}
I_{I \mu}^{\prime \prime}=I_{1}^{\prime} \frac{I-C^{\prime}-I^{\prime}+2 M}{D}+M^{\prime} \frac{C_{1}^{\prime}+I_{1}^{\prime}-1-2 M_{1}^{\prime}}{D}+1 . \tag{41}
\end{equation*}
$$

Assuming stability in both countries, D is positive, and y_{μ} negative, as expected, and $Y^{\prime} \mu$ positive.

In other words, income increases in country Y_{1} and decreases in country Y.

Assuming, further, positive marginal propensities to import, if the second country is unstable, the determinant D is negative. For country's Y income to inorease, the marginal propensity to import of the second country must fulfill the condition:

$$
M_{1}^{1}>\frac{C_{1}^{1}+I_{1}^{1}-1}{2}
$$

Under the above circumstances, the second country's income declines, ($X_{1} \mu$ being negative).

If the unstable country is the first - the marginal propensity to import being positive - , the determinant is negative again, and the unstable country's income inoreases. What happens in the other country depends on whether

In the pirst oase Y_{1} increases, in the second it declines. If

$$
n^{\prime}=\frac{C^{\prime}+I^{\prime}-1}{2}
$$

no changes ocour in Y_{1}.
The consumption of domestically produced commodities declines in the first country, since

and

(Bquation 3^{4}).
The result is indeterminate in the ase of investment in the same country.

In the second country, in the normal case consumption of domestically produced commodities increases and its investment change is indeterminate. Investment, in general, must move in the airection of change in income in either country Y or country Y_{7} and is not excluded to move in the same airection in both.

What happens in oases of alternate stabllity in one country and instability in the other can be deduced in the same way quite easily from the above equations.

Before closing this section, it is intended to consider briefly the effects of a shift in the average propensity to import without changes in the other propensities, which is distinct from the previous case in that the difference between aggregate consumption and imports remains the same
after the shift occure and the shook is expressed as an additive positive constant in the income identity of the second country.

Pinally, the transfer-of-capital question is reviewed.
If there is an autonomous increase in aggregate consumption of the first country, without reduction in any other average propensity in the system except the average propensity to save, due to an increase in the demand for forelgn goods and services; this autonomous increase can be represented by an addition in the income-determination equation of the second country of a parameter equal to the value of the spontaneous increase in question.

The expression of the first country's income is not going to be affected directiy. The multiplier value of the final income equilibrium will inoorporate the induced changes in the variables that constitute the first country's income as a consequence of the autonomous and induced changes in the second country's income components. In the above case, unlike the previously considered shooks, one deals with a change in one of the leakages out of the income flow of the first country which affects the ingections into the inoome flow of the other country in a positive manner. Let this spontaneous shlift be w. The system now becomes:

$$
\begin{gather*}
Y+c(Y)+I(Y)+m_{1}\left(Y_{1}\right)-m(x) \tag{42}\\
y_{1}=c_{1}\left(Y_{1}\right)+I_{2}\left(Y_{1}\right)+m(Y)-m_{1}\left(Y_{1}\right)+w \tag{43}
\end{gather*}
$$

Differentiating the system with respect to the parameter w obtains in the familiar way:

$$
\begin{align*}
& \text { w obtains in the familiar way: } \\
& {\left[\begin{array}{lr}
1-C^{\prime}-I^{\prime}-M^{\prime} & -M_{1}^{\prime} \\
n^{\prime} & 1-c_{1}-I_{1}+M_{1}
\end{array}\right]\left[\begin{array}{l}
Y_{w} \\
x_{2 w}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{align*}
$$

Upon solving first for Y_{w} and Y_{w}, where

$$
Y_{W}=\frac{\partial Y}{\partial w}
$$

and

$$
x_{1 w}=\frac{\partial y_{1}}{\partial w},
$$

one gets:

$$
\begin{gather*}
Y_{w}=\frac{M_{1}}{D} \tag{44}\\
Y_{1 w}=\frac{1-C^{\prime}-I^{\prime}+M^{\prime}}{D} . \tag{45}
\end{gather*}
$$

The final equilibrium values of the sectors of the two economies are obtained by differentiating again the two famalar subsystems with respect to w.

The final solutions are:

$$
\begin{align*}
& C_{W}^{\frac{A}{W}}=\left(C^{\prime}-M^{\prime}\right) \frac{M_{1}}{D} \tag{46}\\
& I_{W}^{*}=\frac{1-C^{\prime}+M^{\prime}}{D} M_{1}^{\prime} \tag{47}
\end{align*}
$$

and

$$
\begin{gather*}
C_{1 w}^{\prime}=\left(C_{1}^{\prime}-M_{1}^{\prime}\right) \frac{1-C^{\prime}-I^{\prime}+M^{\prime}}{D} \tag{48}\\
I_{I_{w}^{*}}^{*}=1+\frac{1}{D}\left[I_{1}^{\prime}\left(I-C^{\prime}-I^{\prime}+M^{\prime}\right)+M^{\prime} M_{I}^{\prime}\right] . \tag{49}
\end{gather*}
$$

One observes that the ifrst country's income will increase if and only if the marginal propensity to import of the second country is positive, considering the determinant D as positive.

The economic sense that this condition makes is easy to realize. The induced 1 mports of the second country as a consequence of the autonomous increase in 1 ts income will cause an increase in the first country's income, which means that the "automatic balancing mechanism" of income effects 1s analytically equivalent to a stable international economio system.

The second country's income will inorease ultimately that is the primary increase is not going to be counterbalanced by negative induced changes - if and only if the
first country is stable, namely, its aggregate propensity to expend on domestic commodities is less than unity, postulating D to be positive.

With respect to each partioular sector one observes that in the normal case where the marginal propensities to import are assumed positive and each country separately is assumed stable, increases are bound to occur.

One may turn now to a well-discussed type of shock, the long-run transfer of capital, or income which can be anaIyzed within the framework already presented. Metzler's 1deas, (22), are going to be substantislly followed. These can be considered as really definitive under the assumptions established to prevall throughout this paper.

The problem of capital or income transfers was discussed, Angell (2), Haberler (10), Viner (35), Meade (19) on the basis of an economy operating in a "olassioal" setting.

The most crucial element of such a model was the price movements as explained by a "quantity theory" of money.

Any transfer of capital or income would depress the paying country's price level and inflate the price level of the recelving country. There would follow an export surplus of the balance of trade of the paying country and an import surplus in the trade balance of the recelving country. This difference would constitute the real transfer, on the as-
sumption of price elastio demand for M and price elastic supply of x.

The essential diffioulties and deficiencies of this approach were, of course, the questionable validity of the quantity theory of money in view of the institutional framework of the advanced societies in the last two centuries; the dependence on assumptions about foreign elastioities which hed to obey the Marshall-Lemer conditions to produce effects in the presence of price level differentisis; and the further assumption, granting the previous ones, that the total sum of the foreign lending or the unilateral payment had to be spent in the recelving country to produce its offects in full.

It was only natural that the improvement in analytical methods, brought about by the Keynesian income approach would make it possible for the problem to be solved, i.e, to specify conditions necessary and sufficient to produce an income transfer through forelgn lending or unilateral payments. The size of the effect is found to depend on the course of other variables and nothing can be conclusively sald without establishing assumptions about them. Specif1cally, the income determination components, spending on domestic goods and services in the receiving country and the paying country, investment expenditures in either country; and the foreign leakage that operates in either receiving or
paying oountry may lead to an increase or a decrease or may not affect at all the final real transfer in terms of the intended amount of forelgn lending or unllateral payment.

It is proposed to examine these questions in some deta11. One need only add that all necessary assumptions are postulated again in order to abstract from price effeots in general.

The transfer problem is basically a problem in economio policy. It can consequently be examined under various assumptions about the purposeful endeavors of the governments concerned with respect to "internal balance" or domestic employment policy and "extermal balance" or balance of payments policy, Meade (18). The basic analysis is only slightly modified to account for any such additional information and the most natural premise under which to proceed is to postulate balanced-budget policies in both countries in order to do away with any fiscal policy effects.

It is possible to imagine three ilkely alternatives relating to primary effects of the transfer process on the levels of income in either or both countries. Specifically, income may be affected airectly in both countries or may be affected in the paying country only, or in the receiving one only. One must then examine the ultimate effects consisting of the sum of direot changes plus all induced changes to their inmit.

Income is affected in both countries directiy, if it is assumed that the paying country disinvests the transferable value and the receiving country invests the same amount. That is to say, national expenditure on investment in the first country deareases while the second country's increases.

Income is affected directly in the paying country only, If the disinvestment of the first country is not followed by investment in the second country, while income is directly affected in the second country only if the investment in the Iatter as a consequence of the transfer is not followed by disinvestment in the former.

On the basis of the above considerations, one can construct the model of the two-country international economic system to reflect these possibilites.

$$
\begin{gather*}
Y=C(Y)+I(Y)+M_{1}\left(Y_{1}\right)-M(Y)-e-p \tag{50}\\
Y_{1}=C\left(Y_{1}\right)+I_{1}\left(Y_{1}\right)+M(Y)-M_{1}\left(Y_{1}\right)+e+f^{\prime} \tag{51}\\
B+M_{1}\left(Y_{1}\right)-M(Y) \tag{52}
\end{gather*}
$$

In the system represented by Equations 50,51 and 52 the parameter e stands for the transfer followed by disinvestment in the first country and investment in the second, the parameter f refers to the direct effect on the first country's income only and f' represents the direct of-
feet on the second country's income only. The identity 52 is the balance of trade.

We are primarily interested in the ultimate effects on B of any parameter indicating a transfer, since it is the final difference in the balance of trade resulting from the transfer shook that measures the net amount of any unilateral paywent or long-run foreign lending.

From Equations 50 and 51 one obtains solutions for

$$
\frac{\partial \Psi}{\partial e}=y_{e}
$$

and

$$
\frac{\partial \mathrm{x}_{1}}{\partial \mathrm{e}}=\mathrm{Y}_{1 e} .
$$

$$
\begin{aligned}
& \text { These are given by the system: } \\
& {\left[\begin{array}{lrr}
1-C^{\prime}-I^{\prime}+M^{\prime} & -M_{1}^{\prime} \\
-M^{\prime} & 1-C_{1}^{\prime}-I_{1}^{\prime} & +M_{1}^{\prime}
\end{array}\right]\left[\begin{array}{l}
y_{e} \\
y_{1 e}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \text {. }} \\
& Y_{6}=\frac{C 1+I 1-1}{D}=-\frac{1-C_{1}-I_{1}^{1}}{D} \\
& X_{1 e}=\frac{2-C 1-1}{D}
\end{aligned}
$$

Substituting these values into

$$
\frac{\partial B}{\partial e}=M_{1}^{\prime} Y_{1 e}-M^{\prime} Y_{e}
$$

one gets:

$$
\begin{equation*}
\frac{\partial B}{\partial}=\left[n^{\prime}\left(1-C_{1}^{\prime}-I_{1}^{\prime}\right)+n_{1}^{\prime}\left(1-C^{\prime}-I^{\prime}\right)\right] \frac{I}{D} \tag{53}
\end{equation*}
$$

where

$$
D=\left(1-C^{\prime}-I^{\prime}+M^{\prime}\right)\left(1-C_{1}^{\prime}-I_{1}+M_{1}\right)-M_{1}^{\prime} n_{1}^{\prime} .
$$

With the same procedure mutatis mutandis, one finds:

$$
\begin{equation*}
\frac{\partial B}{\partial P}=M^{1} \frac{1-C 1-I 1}{D} \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial B}{\partial f^{\prime}}=\frac{M 1}{D}\left(1-C^{\prime}-I^{\prime}\right), \tag{55}
\end{equation*}
$$

having substituted into 54 and 55 the valued:

$$
Y_{f}=\frac{1-C_{1}^{\prime}-I_{1}^{\prime}+M_{2}^{\prime}}{D}, Y_{1 f}=-\frac{m^{\prime}}{D}
$$

and

$$
Y_{f^{\prime}}=\frac{M I}{D}, Y_{1 f^{\prime}}=\frac{1-C^{\prime}-I^{\prime}+M^{\prime}}{D}
$$

where

$$
\frac{\partial Y}{\partial f}=Y_{f}, \frac{\partial Y_{1}}{\partial f^{\prime}}=Y_{1 f} \text { etc. }
$$

Assuming that the international economic system is stable - determinant D is positive - one can analyze the ef fecta of the transfer under the possible combinations of the assumptions about the direct effects on each country's expenditures and each country's stability.

In the case where income is affected in both countries directly by the transfer and both countries are stable, income increases in the receiving country and falls in the paying country. The trade balance, upon examining the terms of Equation 53, improves in the paying country but not to the extent of the amount of the transfer. In formal terms,

$$
0<\frac{\partial \mathrm{B}}{\partial}<1
$$

as can easily be seen from comparing numerator and demonator of the R.H.S. expression in 53, assuming the normal case of positive propensities to import.

When the paying country is unstable and the receiving one stable, income declines in both and the trade balance of the paying country increases by more than the amount of transfer, namely

$$
\frac{\partial B}{\partial e}>1
$$

If the receiving country is unstable and the paying one stable, income increases in both and the trade balance increases in it by more than the amount transferred.

In the case where income is affected directly by disinvestment in the paying country only, income falls in both countries and the trade balance of the paying country 1 m proves by less than the amount of the transfer,

$$
0<\frac{\partial B}{\partial P}<1
$$

Equation 54, if both countries are stable.
If the paying country is unstable and the receiving stable, income falls in both but the trade balance of the paying country increases by more than the amount transferred, or

$$
\frac{\partial B}{\partial f}>1
$$

When the paying country is the stable one, income falls in both and the trade balance in it declines by more than the transfer, in other terms,

$$
\frac{\partial \mathrm{B}}{\partial \mathrm{f}}<-1
$$

Finally, in the case where the direat effect of the transfer is felt in the recelving country's income, if both countries are stable, income increases in both, and the trade balance of the paying country increases by less than the transfer. (Analyze the terme of Equation 55). If the paying country is unstable income increases in the paying country, falls in the recelving country and the trade balanoe decllnes in the former.

If the receiving country is unstable, income increases In both and the trade balance increases on the paying country by more than the transfer.

We have thus concluded the examination of international transmissions of income through the mechanism of induced changes in the variables. Within the above given framework many connected questions can be easily answered. It is 1 n teresting to analyze the effects of different government policies in view of attaining specifled goals. This however will not be undertaken here, since it would bring the dission far afield.

ECUILIBRIUM RATE OF GROWTH AND THE
 INTERNATIONAL ECONOMIC SYSTEM

The determination of an equilibrium rate of growth of an open economy and of the intermational conomic system an be analyzed in terms of the Harrod-Domar approach which, notwithstanding its grave shortoominga, is very suggestive as to the role of the forelgn sector, Johnson (15).

The equilibrium condition in an open economy in the statio case $1 s$ that the leakages out of the system equal the offaets, that is $I+X=S+M$, where S is savings, the other symbols having the meaning attached to them throughout the paper.

The dymamisation of this condition is quite easy. Consider

$$
\begin{equation*}
(s+m) X_{t}=X_{t}+I_{t} \tag{1}
\end{equation*}
$$

where s and m stand for the marginal propensity to gave, assumed constant, and the marginal propensity to 1 mport, respectively, which is also assumed constant.

This condition refers to the demand side of the economy. The completion of the picture, in order to determine the equilibrium rate of growth, requires a eapacity equation.

$$
\begin{equation*}
Y_{t}=\frac{I_{t}}{g}=b I_{t}, \tag{2}
\end{equation*}
$$

defining

$$
\Delta Y_{t}=Y_{t+1}-Y_{t}
$$

Bquation 2 relates an increase in oapacity inoome to investment shere F is the capital-output requirewent and b 1ts reciproos2. Equatione I and 2 together deteraine the equilibrium rate of growth. If Equetion 1 relates investment required at time to utilize fully existing anpital and meet the rate of exports X_{t} required to offaet the leaksge $M_{t}\left(m X_{t}\right)$, any increase in oapacity output overtime hes to be matched by equal inoreanee in aggregate demand. Bquation 2 givea the increase in oapacity output as a function of Investment and one is sble to solve for a rate of gronth aatiafying siaultaneously Equations 1 and 2 .

The assurption that increases in capacity output aspends only on investment is very restriotive, when especial$2 y \mathrm{~g}$ is ascumed constant. In the extension of this growth approach which has been undertaken, it is further postulated that invastment utilizes only domestic output, in other words, that acrestic productive oapacity doem not require imported goods. Otherwise Equation 2 should have inoluded a term for the contribution of importa to produotive oapacity. Again, it is assumed that imports are intended for coneumption purposes. Furtherwore, it is postulated that negative or positive trade balances are financed by
unilateral payments or by short-run capital movements. This assumption is necessary to keep the analysis as simple as possible. All the above assumptions are ordinary in the multiplier analysis.

The definition of the rate of growth is

$$
\begin{gather*}
\frac{y_{t+1}-y_{t}}{y_{t}} \\
\frac{y_{t+1}-y_{t}}{Y_{t}}=\frac{b(s+m) I_{t}}{I_{t}+X_{t}} \tag{3}
\end{gather*}
$$

is the rate of growth, which, after some algebraic treatment, becomes:

$$
r_{t}=b\left(s+m-\frac{X_{t}}{Y_{t}}\right)
$$

On the basis of Equation 3 one sees that if the export rate is falling over time the rate of growth increases and vice versa.

By differentiation of Equation 3'1

$$
\begin{equation*}
\frac{d r}{d t}=b \frac{X_{t}}{Y_{t}}\left(\frac{\dot{x}}{X_{t}}-r_{t}\right) \tag{4}
\end{equation*}
$$

From Equation 4 it is seen that if the rate of growth of exports is larger than the equilibrium rate of growth the latter is declining over time

$$
\left(\dot{x}=\frac{d x}{d t}\right)
$$

Up to this point the equilibrium rate of growth has oniy been defined and nothing has been said about its features.

It is not possible to analyze it without an explicit solution to the difference Equation $3^{\prime \prime}$, whose form 1s:

$$
x_{t}=[b(s+m)+1] y_{t-1}-x_{t-1}
$$

It is to be noted again that the stability of the equi11 brium path depends on the root of the homogenous part of the above equation and several patterns of behavior are possible? For steady growth

$$
m<C^{\prime}-1 .
$$

In a two-country international economy, the interaction of the two equilibrium rates of growth can be investigated in the following manner by replacing X_{t} by $m_{1} Y_{1 t}$ and $X_{1 t}$ by $m Y_{t}$:

$$
\begin{align*}
r_{t} & =b\left(s+m-\frac{m_{1} Y_{1 t}}{Y_{t}}\right) \tag{5}\\
r_{1 t} & =b_{1}\left(s_{1}+m_{1}-\frac{m Y_{t}}{Y_{1 t}}\right) \tag{6}
\end{align*}
$$

Differentiating Equations 5 and 6 with respect to t, one obtains:

$$
\frac{d r}{d t}=\frac{b m_{1} \cdot Y_{1}}{y}\left(r-r_{1}\right)
$$

and

$$
\begin{equation*}
\frac{d r_{1}}{d t}=\frac{b_{1} m y}{y_{1}}\left(r_{1}-r\right) \tag{1}
\end{equation*}
$$

From Equations 5^{\prime} and 6^{\prime} one observes that if the first country's equilibrium rate of growth is larger than that of the second country, the former rate would continually increase and the latter decline. The opposite holds true in the reverse position. The growth rate at the equilibrium path would remain constant, if the two countries grow at the same rate. In terms of the assumptions set up at the beginning of this section, one sees that the above results make economic sense. It was found previously that if the export fraction is falling over time, the equilibrium rate of growth increases and vioe versa. Since, on the assumption that the first country's equilibrium rate of growth increases

$$
\left(r>r_{1}\right)
$$

1ts export rate falls and so does by definition the second
country' s import rate. If the second country's equilibrium rate of growth were to remain constant, an increasing proportion of 2 ts output would have to be channeled into investment; at the same time this is 1 impossible, because the second country's exports are a continually increasing frack tion of its output, hence a decreasing proportion of its output would be available for investment purposes.

The form of the equilibrium path of the international economy on be determined for different values of the roots of the system of difference Equations 5 and 6 . One can rewrite the system 5 and 6 as follows:

$$
\begin{align*}
& y_{t}=[b(s+m)+1] y_{t-1}+m_{1} y_{2 t-1} \tag{7}\\
& x_{1 t}=m y_{t-1}+\left[b_{1}\left(s_{1}+m_{1}\right)+1\right] y_{1 t-1} \tag{8}
\end{align*}
$$

Define

$$
[b(a+m)+2]=\delta
$$

and

$$
\left[b_{1}\left(a_{1}+m_{1}\right)+1\right]=\delta_{1}
$$

The above system can be consolidated into the following expression: *

$$
\begin{equation*}
Y_{t}=\left(S_{+} \delta_{1}\right) Y_{t-1}+\left(m_{1}-\delta \delta_{1}\right) Y_{t-2} \tag{9}
\end{equation*}
$$

Equation 9 is a second-order difference equation and may yield a variety of behavior patterns.

The stability conditions for the above equation are:

$$
\begin{equation*}
1-\left(\delta+\delta_{1}\right)-\left(\min _{1}-\delta \delta_{1}\right) \tag{1}
\end{equation*}
$$

"The mathematical derivation of Equation 9 is attained through the following steps:
a. Solve for $Y_{1 t-1}$ in Equation 7. This solution is:

$$
Y_{1 t-1}=-\frac{1}{m_{1}}\left(Y_{t}-\delta Y_{t-1}\right)
$$

b. Substitute this expression into Equation 8:

$$
\begin{aligned}
Y_{1 t} & =-m Y_{t-1}+\delta_{1}\left(-\frac{1}{m_{1}}+Y_{t}-\delta Y_{t-1}\right) \\
Y_{1 t} & =-m Y_{t-1}-\frac{\delta_{1}}{m_{1}}\left[Y_{t}-Y_{t-1}\right] .
\end{aligned}
$$

o. Reduce the time reference by one period:

$$
y_{1 t-1}=-m Y_{t-2}-\frac{\delta 1}{m_{1}}\left[y_{t-1}-y_{t-2}\right]
$$

a. Substitute this last expression for $Y_{1 t-1}$ back in Equation 7. We obtain:

$$
\begin{aligned}
& \qquad y_{t}=\delta y_{t-1}-m_{1}\left[-m y_{t-2}-\frac{\delta_{1}}{m_{1}}\left(y_{t-1}-y_{t-2}\right)\right] \\
& y_{t}=\left(\delta_{t-1}\right) \delta_{1}+y_{t-1}+\left(m_{1}-\delta \delta_{1}\right) y_{t-2} \\
& \text { which is Equation } 9 .
\end{aligned}
$$

$$
\begin{gather*}
1+\left(m m_{1}-\delta \delta_{1}\right)>0 \tag{11}\\
1+\left(\delta+\delta_{1}\right)-\left(m m_{1}-\delta \delta_{1}\right)>0 . \tag{1.11}
\end{gather*}
$$

If one retranslates the above conditions in terms of the original parameters, one observes that they are too complicated to make any intuitive eoonomic sense. One can say however that the system is highly unstable in view of what seem to be reasonable values for b, s, m and the correspondIng parameters of the other country.

The attainment of more realistio results depends naturally on the abendonment of the very rigid assumptions of the Harrod Domar approach on the one hand and on the introduction of new terms into the relationships dealing with capacity output. The mathematical treatment however becomes very complicated and looses occesionslly much of the suggestiveness which is a merit of this simple type of models, if all due qualifications are made.

[^1]
A GENERALIZED MODEL OF INTERNATIONAL TRADE

Consider a system in which there are n trading regions or countries. The assumptions will be made again as to abstraot from price effects, so thet the only new feature of the present chepter is the number of trading units. A first-order system describing the international transactions is not a specisl case based on the assumption of a oneperiod lag in each independent varlable, since higher order aystems can be converted into first order ones by successive redefinitions of the variables. A first-order system will then be considered being the general case of Innear dynamic model.

The system (1)

$$
\begin{align*}
& Y_{1 t+1}=E_{1}\left(Y_{1 t}\right)+m_{12}\left(Y_{2 t}\right)+\ldots+m_{1 n}\left(Y_{n t}\right) \\
& Y_{2 t+1}=E_{2}\left(Y_{2 t}\right)+m_{21}\left(Y_{1 t}\right)+\ldots+m_{2 n}\left(Y_{n t}\right) \tag{1}\\
& : \\
& Y_{n t+1}=E_{n}\left(Y_{n t}\right)+m_{n 1}\left(Y_{1 t}\right)+\ldots+m_{n n-1}\left(Y_{n-1} t\right)
\end{align*}
$$

describes the simultaneous income determination in ali tradIng regions, where $E_{1}\left(\Psi_{1} t\right)$ is defined as the total domestic expenditure of the $1^{\text {th }}$ country as a function of 1 ts income at time $t ; m_{1 j}\left(Y_{y t}\right)$ is defined as the purchases of commodities of country j from country 1 as a function of the j
country' B income as time t .
It is assumed that $\mathbb{E}_{1}\left(Y_{1 t}\right)$ and $\mathbb{m}_{1 j}\left(Y_{j t}\right)$ are linear expressions in the ooefficients for all i' I and $\mathrm{J}^{\prime} \mathrm{E}$ so that system (1) can be rewritten as:

$$
\begin{align*}
& y_{1 t+1}=E_{1} Y_{1 t}+m_{12} Y_{2 t}+\ldots+m_{1 n} Y_{n t} \\
& y_{2 t+1}=m_{21} Y_{1 t}+E_{2} Y_{2 t}+\ldots+m_{2 n} Y_{n t} \tag{2}\\
& : \\
& y_{n t+1}=m_{n 1} Y_{1 t}+m_{n 2} Y_{2 t}+\ldots+E_{n} Y_{n t}
\end{align*}
$$

Subtracting the elemente of the column vector Y_{t+1} from both siaes of the system (2) it follows:

$$
\begin{align*}
& \mathrm{E}_{1} Y_{1 t}-Y_{1 t+1}+m_{12} Y_{2 t}+\ldots+m_{1 n} Y_{n t}=0 \\
& m_{21} Y_{1 t}+E_{2} Y_{2 t}-Y_{2 t+1}+\ldots+m_{2 n} Y_{n t}=0 \tag{3}\\
& : \\
& m_{n 2} Y_{1 t}+m_{n 2} Y_{2 t}+\ldots+E_{n} Y_{n t}-Y_{n t+1}=0
\end{align*}
$$

The oharacteristic equation of the system (2) is then:

$$
|n(y)|=\left|\begin{array}{ccccc}
E_{1}-y & m_{12} & m_{13} & \cdots & m_{1 n} \\
m_{21} & E_{2-y} & m_{23} & \ldots & m_{2 n} \\
\vdots & & & & \\
\vdots & & & & \\
m_{n 1} & m_{n 2} & m_{n 3} & \cdots & E_{n}-y
\end{array}\right|=0
$$

where $|n(y)|$ is the characteristic determinant of the system. Expanding the characteristio determinant we obtain a polynomial equation in y

$$
y^{n}+H_{1} y^{n-1}+H_{2} y^{n-2}+\ldots+H_{n-1} y+H_{n}=0
$$

where the H_{1} 's are coefficients of which H_{1} and H_{n} have the following important properties:
H_{1} is equal to

$$
\text { (-1) } \sum_{1=1}^{n} y_{1}
$$

where the y1's are the n roots of the above polynomial equation; and H_{n} is equal to

$$
(-1)^{n} \prod_{1=1}^{n} y 1
$$

Further, H_{1} equals the sum of the elements of the principal diagonal of the matrix $M(0)$ multiplied by (-1); and

$$
H_{n}=|n(0)|(-1)^{n} .
$$

In other words, the sum of the roots of the characteristic equation of a first-order linear difference equation system is equal to the trace of the characteristio matrix and the product of the roots is equal to the characteristic determinant of the system.

1. If the system is stable the aum of the roots must be less than n, the degree of the characteristic equation, in absolute value.
2. If the system $2 s$ stable, the characteristic determinant $|M(0)|$ must be less than unity in absolute value.

11i. If elther the trace or the determinant is negative or zero, the system admits of non-real and/or negative roots.

The above three statements are necessary but not sufficient conditions for stability.

As long as no other specifications are made about the magnitudee of the coefficienta of the system, unambiguous results cannot be derived; although the above qualitative taxonomy indicates already that stability of each country in isolation is not a necessary condition for the stability of the international system (proposition 1).

A "normal" situation is considered to be that in which the matrix $[M]$ is non-negative. If the $m_{1 j^{\prime}} \mathrm{s} \geq 0$ for all $1^{\prime} s$ and f^{\prime}, a sufficient condition for the stability of the system is that the norm of the matrix (defined as the largest columar sum) be equal to or smaller than unlty. If it is equal to unity the system oamot explode. If it is smaller than unity, it converges upon an equilibrium value.

The relation between the dynamic model and the static one can be clearly seen from the following considerations.

In the matrix notation, the dynamic system is

$$
I Y_{t+1}=E Y_{t}+m Y_{t}+k
$$

whioh has the stat10 solution, for $Y_{t}=Y_{t+1}$

$$
I Y_{t}=E Y_{t}+m Y_{t}+k
$$

or

$$
(I-E-m) Y_{t}=k
$$

where k is a constant vector. In order for the system to admit of economic interpretation the components of the Y_{t} vector must be positive. The solution of the dynamic system 18 given by iteration by:
$Y_{t}=(E-m)^{t} Y_{0}+\left[I+(B-m)+(E-m)^{2}+\ldots+(E-m)^{t-1}\right] k$

The system will converge to the equilibrium value

$$
y_{t}=(I-E-m)^{-1} k
$$

If and only if all the roots or the matrix $[E+m]$ are less than one in modulus.

Hawking and Simon have show in their work on inputoutput models that positive solutions w111 attain in the case of a positive matrix if and only if all prinoipal minors of ($I-E-$ m) are positive.

If the elements of the matrix are just nonnegative the positivity of the principal minors above guarantees the nonnegativity of the solutions. A similer proposition was proven by Netzler (23).

The above theorems are in a sense inexact, since, ae proven by Solow (33), the decomposabllity of the nonnegative matrix was not taken into acount.

The economic interpretation of decomposability is very important. Consider a square matrixn $n \mathrm{n}$. A collection of elements, m_{1}, \ldots, m_{n} w1ll be oelled a olosed set if

$$
\text { mpq }=0
$$

for any q in the set and any p not in the set. With respect to the international trade model a olosed set is a collection of countries which do not purchase from countrien not belonging to the collection.

The relative matrix is said to be indecomposable if there is no closed set other than the set of all elements

$$
m_{n 1}, \ldots, m_{n n}
$$

It is evident that an expenditure originating in any country or seotor of a closed set as above defined will not leak out of the system. In a system with various closed sets, in other words, in a decomposable system an expenditure in one set does not oreate "derived demend" in another.

Then, an exact theorem about sufficient conditions for stability due to Solow (33) states:

If $(\mathrm{E}+\mathrm{m})$ is a non-negative, indecomposable matrix none of whose column sums is greater than one and at least one of whose column sums is less than one, then all the characteristic roots of ($E+\mathbb{I}$) have a modulus less than one, that is

$$
I+(E+m)+(E+m)^{2}+\ldots
$$

converges to

$$
(I-E-m)^{-1} .
$$

Again, the central point in the economic interpretation of the theorem is that
"We can tolerate one or more, or even all but one, countries balanced on the stablility-instablilty mife-edge of a unitary marginal propensity to spend a. as long as there is at least one country with a positive marginal to save and b. as long as the trading syatem $1 s$ so firmy tied together that each country is intrinsically linked to such a stable country."

The investigation of the effects throughout the system of various shocks orlginating in one country can be carried out by a "general multiplier" analysis.

A shook a originating in country i causes the following changes from the initial equilibrium position:

$$
\frac{d Y_{1}}{d a}=\frac{M_{11}}{M}, \frac{d Y_{k}}{d a}=\frac{M_{1 k}}{M} \text { etc. }
$$

where $M_{i j}$ is the cofactor of the element in the $1^{\text {th }}$ row and $j^{\text {th }}$ column of the matrix of the system.

$$
\frac{M_{1 j}}{1 m}
$$

is a general multiplier measuring the total effect on $j^{\text {th }}$ country's income, lying in the normal case between the ordinary (olosed economy) and the foreign-made multiplier of a single equation model.

THE THEOZY OF INTERNATIONAL

 TRANSMISSIONS AND EMPIRICAL RESEARCRIt is intended to present in this chopter the models used in three stuaies (27), (29), (4), on internationsi transmissions with main aim the statistical estimation of the relationships involved. The common feature of these stualies is the effort to establish in quantitative term the relation between foreign trade and the level of domestio economic activity of the various countries making up the international system.

The statietical procedures employed in all three studies are the multiple regression and correlation techniques. A common weakness of the approach used by the aum thors is the single equation model for each particular relationsh1p.

The Neisser-llodimiand study (27).

This is the most ambitious of the three in terme of the complexity of the sodels used and the breakdown of countries and commodities.

A summary of the general framework is as follows:

1. The countries are divided into industrial and nonindustrial according to the composition of their exports during the interwar period. The countries whose exports of manufactured goods have been more than half of the total
were consldered industrial, the others non-industrial.
2. Each import function of the industrial countries involves as independent variables on which 1 mports depend a. Income, b. prices, c. net stook change, d . net capital flow, e. food production.
3. The import function of each non-industrial country involves as independent variables: a. exports, b. Industrial output, c. prices, d . net atock change, e. net capital flow.
4. The exports of any country depend directiy upon a. 2mports of all other countries, b. prices, c. net stock change, d. net capital flow.
5. The breakdown of commoditiee is into raw materials, food, and manufactured goode.

The following observations about the relative importance of each independent variable of the models" can be made:
a. Income. In all cases it proved to be the "chief inport attracting agent". The same can be said about industrial output whenever it was used instead of income.
b. Prices. The effects of prices could not be reliably estimated in all functions. Not rarely, a price ratio was found to influence exports, but as regards 2 mports the price

[^2]varlable hed a demonstrable effect only in the functions of Industrial countries. Bven in this case, most of these price effeots had to be omitted for practical purposes from the overall equation system.
c. Net capital ilow. It could not be shown statistically to affect the exports of the various members. As to imports, the distinction of industrial and non-industrial countries is pertinent. An inorease in the net flow of apItal to an industrial country results in an inerease in primary imports associated with rising income. The high correlation between income and net capityl movements, being the phenomenon of multicollinearity "eliminated both the necessity and the possibility of using both variables in the explanation of industrial oountries imports". As to nonindustrial countries, a net ospital inflow is usually converted into imports of manufactured goods.

The study covers the intervar period, 1924-1937, rough1 y .

Tables 25 and 26 (27) reproduced from the study, show numerical estimates of income effect coefficiente. (Subscripts refer to countries as follows: 1. U. K.; 2. U. S.; 3. Germany; 4. Eranoe; 5. group of Italy, Japan, sweden, Belgium, Svitzerland, Czeohoslovekie, Austris)

The data below (Inoome ratio coefficients (a a_{1}), 1928, 1932, 1935: Dollar change in any industrial. memberts income
associated with a 1 . change in any other industrial memberts income (both in current prices) sssuming no counterweasures regarding the trade balance) refer to the transmission mechanlem set in motion by a domestically produced change in real income which, through its influence on 2 mports, affects the incomes of the other countries. The assumption 1s, $8-$ part from constancy of prices, that the determinants of income in any other country I remained unchanged, so that the coefficients given below help to determine the induced income changes in country J.

| | $\frac{d_{1} y_{j}}{d_{1} y_{1}}$ | | $\frac{d_{1} y_{j}}{d_{1} y_{2}}$ | $\frac{d_{1} y_{j}}{d_{1} y_{3}}$ |
| ---: | :---: | :---: | :---: | :---: |$\frac{d_{1} y_{j}}{d_{1} y_{4}}$

Income elasticity coefficients (a_{1}) for 1928, 1932, 1935 (Percentage ohange in any industrial member's income aasociated with a ${ }^{3} 1$ change in any other industrial member's income (both in ourrent prices), assuming no countermeasures regarding the trade balance) are given as follows:

$$
n\left(y_{g} y_{2}\right) \quad n\left(y_{j} y_{2}\right) n\left(Y_{j} Y_{3}\right) n\left(Y_{j} y_{5}\right)
$$

1928

$\mathrm{J}=$ member $\frac{1}{2}$	$.034^{7}$.043\%	$\begin{aligned} & .0528 \\ & .033 \end{aligned}$. 0412
3	.133		$.070$. 115
5	. 138	1932	$.062$. 082	
$\mathrm{j}=$ member 1			. 027	. 033	. 036
2	. 057			. 036	. 030
3	. 086		. 049		. 119
5	. 127		. 036	. 067	
		1935			
$\mathrm{J}=$ member $\frac{1}{2}$. 029	. 035	. 036
3	. 0777		. 054	. 034	. 149
5	. 093		. 042	. 065	

The logic of the Nelsser-Modigliani approach is not satisfactory from the standpoint of economic theory, however much it may have facilitated the statistical treatment of the equations. The simuitaneity of the relationships in any economy oan be negleoted only for theoretical purposes, in order that a partial analysis may throw light on the intricacies of each relationsh1p in isolation or ceteris paribus. Wherever though the purpose is that of empirical verifioation of a model or of policy recommendations, a "realistic" picture of the economy can only be attained through interdependence models. When the question of what variables have been considered by Neisser-Modigliani endogenous and what exogenous, one immediately feels that the only excuse is the formidable difficulty of handing a system of simultaneous dynamic equations suitable for the scope of the study!

There are only two endogenous variables, imports and exports. The exogenous variables are a. income, b. prices, c. food production, and d. net capital export of the primaries countries.

There are two economic problems to be considered on the basis of the above distinction. First, whether there is any dependence among the exogenous variables, and second, whether not only do the import and export variables depend on the exogenous variables, but they influence them, in their turn. (The authors ascertain that the exogenous variables passed the test for statistical independence).

Consider the relation of income and prices. What appears to be the most serlous doubt about the alleged independence of income and prices has its ground in the particular historical period chosen for the investigation. The time span 1924-1937 is in general a poriod of "Keynesian" environment. And it is theoretioally acceptable that income changes under resource unemployment leave prices unaffected. But the converse is not true. Quite in the contrary, since resources are unemployed, an autonomous positive price level change is expected to raise income through setting in motion the multipliermacoelerator mechanism. So, there is a dependence of inoome - a dynamic or lagged dependence - on prices in an underemployment situation.

The relation between income and food produotion is evidently a positive one and only its practical significance for a particular case may be argued.

There is possibly no reason to expect in the short run a airect interdependence between capital export and prices or good production. The relation between capital movements and income in the non-industrial (where only it is relevant In the model) cannot be unambiguously assessed, because to a great extent it depends on whether the derived demand due to a capltal movement into a non-industrial country w 111 leak totally or partially out of the system or not. It is however a strong assumption to make that aspital imports and income are independent in a non-industrial country where there is a "presumption of underdevelopment". The authore attempted to meet this difficulty by including a variable consisting of total exports plus industrial output instead of income but it is again evident that exports and induatrial output are interrelated with income being just components of $1 t$.

The last consiaeration bringg the oritioism to the second problem, namely whether the endogenous variables influence or not the exogenous variables. If yes, the exogeneity is lost and the resulta derived from the model are tenuous.

Now it is evident that imports and exports, or more precisely the balance of trade influences income being a component of 1. .

The very strong assumption for practical purposes has to be made that any change in the balance of trade is compensated by opposite changes in other income components withIn the same time period. This has been recognized for particular cases by the authors who modified gd hoo their equations. But since it is in the main their purpose to explain exports and imports as the only endogenous variables, the weakess is in general unmitigated. The main theoretical criticism then, is the exogeneity assumption so crucial to the Neisaer-Modigliani approach. Only a system of simultaneous equations could meet this oriticism, if the model were to include the variables used by the authors of the stuaj.

The Polak study

Polak (29) constructed a model for empirical application where the endogenous variables for the world as a whole are the exports (x), national income (y) and imports (m) of each country. Autonomous investment and price ratios are among the exogenous variables.

Using the subscript i to distinguish countries, the following relationships describe essentially his approach.

All variables are in billions of dollars at constant prices.

$$
\begin{equation*}
x_{1}=\sigma_{1} \quad x_{W} \tag{1}
\end{equation*}
$$

Where σ_{1}^{\prime} is the propensity of the world as a whole to purchase irom country 1;

$$
\begin{equation*}
y_{1}=\frac{x_{1}}{\delta_{1}+\mu_{1}} \tag{2}
\end{equation*}
$$

where $\delta_{1}=(1-p r o p e n s i t y$ to consume - propensity to invest) and μ_{1} the propensity to import of 1 ;

$$
\begin{equation*}
m_{1}=\mu_{1} y_{1} \tag{3}
\end{equation*}
$$

The international reflection ratio being

$$
\begin{gathered}
\rho=\frac{\mu}{\delta+\mu}, \\
m_{1}=\rho_{1} \sigma_{1}^{1} x_{w}+a_{1}
\end{gathered}
$$

where a_{1} is the total effect upon imports of all exogenous variables omitted from the above equations.

Then,

$$
\sum_{1} m_{1}=x_{w} \sum_{1} \rho_{1} \sigma_{1}^{\prime}+\sum_{1} a_{1}
$$

and since

$$
\begin{aligned}
& \sum_{i} m_{i}=x_{w}=\sum_{1} x_{1}, \\
& x_{w}=\frac{\sum_{1} a_{1}}{1-\sum_{i} \rho_{1} \sigma_{1}^{\prime}} .
\end{aligned}
$$

where

$$
\frac{1}{1-\sum_{1} p_{1} \sigma_{1}^{\prime}}
$$

can be oalled the "world multiplier".
Polak has obtained numerical estimetes of the coefficients referring roughly to $1924-38$. The letters P, M, T attached to countries in the sumary of his results as it appears below indicate primaries, manufactures, and totals:

Polak's approach is much oloser in spirit to the "Keynesian" models employed in the present essay.

The inclusion of income among the endogenous variables to be explained by the model is theoretically more sound than the Nelssermodigliani approach. Evidently, however, Polak' a study suffers from oversimplifioation.

The equilibrium level of income is given by the exports multiplied by the foreign trade multiplier.

The fact that investment is autonomous makes the pioture very remote from reality, notwithstanding our ignorance of how to explain satisfactorily induced investment. The export functions of his model may be statistically easily manageable, but they hardy reveal any economic notion as for instance a country's import function does.

They are statistical regressions without rigorous economic significance. This makea the concept of an international economic system rather economically artificial. In other words, the IInkage of each country with any other is not clearly shown as it would be the case if the concept of world exports were not the beginning analytioal step but the final. The aggregation over so meny countries deprives the notion of an international system of much substance. Finally since agein the time period was characterized by underemployment equilibrium prices could not for any useful purpose be treated as endogenous.

The Eeckerman study

Beckerman (4) presents a model of the trade network of a ten-sector international economy.

The following equation set describes the model:

$$
\begin{equation*}
m_{11} x_{2}+m_{12} x_{2}+\ldots+m_{1 n} x_{n}+e_{1 A}=x_{1} \quad(1=1,2, \ldots, n) \tag{1}
\end{equation*}
$$

where X_{j} is the total volume of exports of sector j ; $\mathrm{m}_{1 \mathrm{j}}$ is the ratio of $j^{\prime} s 1$ mports from 1 and $m_{1 j} X_{j}$ stands for the $1 m-$ ports of J from $1 . \mathrm{A}$ is the total volume of imports of sector L and e_{1} is the proportion from 1 . It 1 s assumed that sector $I^{\prime} s$ imports are independent of exports.

In this ten-sector model, 1 runs from 1 to 9 ; the sectors used are 1. Canada; 2. Dollar Latin America; 3. Sterling Memberg of O.E.E.C.; 4. Continental Western Europe; 5. Overseas territories of Continental Weatern Burope;
6. Overseas Sterling Axea; 7. Non-Dollar Latin Americe; 8. Eastern Europe (including China) ; 9. "Others" representing the world except the above mentioned sectors and the United States. L stands for the United States.

In matrix form the system becomes:

$$
\begin{equation*}
(I-M) X=A_{e} \tag{2}
\end{equation*}
$$

where I is the unit matrix, N the $m_{1 \rho}$ metrix, X the column sector of exports, A the seotor representing total United States imports and e is the column sector of e_{1}.

Furthermore,

$$
\begin{equation*}
m_{j}=\sum_{1=1}^{n_{,} 1} m_{1, j} \quad(j=1, \ldots, n) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{j}^{\prime}=\sum_{i=1}^{n} m_{1 j} \quad(j=1, \ldots, n) \tag{4}
\end{equation*}
$$

Letting M_{1} be the total imports of sector 1 , we have

$$
\begin{equation*}
n_{1}=m_{1} x_{1} \quad(1=2, \ldots, n) \tag{5}
\end{equation*}
$$

M_{1} need not be constant.
The use of the term "propensity to import" as used by the author means

$$
\frac{\Delta\left(m_{1 j} x_{j}\right)}{\Delta x} .
$$

The major assumption in this study is that the elasticties of demand for imports with respect to exports from individual regions into other regions have remained fairly constant over the period in consideration.

A sector multiplier, say, for sector 1 , may be defined as the ratio of the final change in $1^{\prime} s$ total exports to the autonomous change in total U.S. imports.

Let it be denoted by

$$
k_{1}=\frac{\Delta x_{1}}{\Delta A} .
$$

Let \mathbb{K} represent the column sector of $k_{1}(1=1, \ldots, n)$ and $K^{*}=(I-M)^{-1}$. Then,

$$
\begin{equation*}
(I-M) K=e \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{X}=\mathrm{K}^{* 1} \mathrm{e} \tag{7}
\end{equation*}
$$

The total world trade multiplier $(=\bar{K})$ will then be

$$
\begin{equation*}
\bar{K}=1^{\prime} K^{*}{ }_{e} \tag{8}
\end{equation*}
$$

where 1' denotes a unit row of k elements.
The reflection ratio of sector 1 with respect to sector 1 is defined as the ratio of the final change in $1^{\prime} s$ exports to an autonomous change in U.S. imports, from sector j alone.

The reflection ratio of sector I with respect to the whole world, j's international reflection ratio, is the ratio of the final change in worlds exports from autonomous increase in U.S. imports from sector j alone.

In terms of general conclusions that the author draws, it is that the reduction of the world trade multiplier between 1938 and 1953 is primarily due to changes in the pat-
tern of trade among non-U.S. sectors. The most important ohange to this effect has been the increase in the proportion of imports from the United States "insofar as this corresponas to a lower marginal propensity to import from the non-U.S. gectorg". The most important consideration to which Beckerman 1s led by his results is this:

Suppose it is decided that the most unstable element in the economy is investment. It might then appear legitimate to deduce that, in the interest of maximizing the stability of the level of income though not of maximizing its absolute level, the proportion of investment to total income generating expenditure should be made as low as possible. But at the new level of equilibrium at which savings equals investment (abstracting from foreign trade and government sectors, etc.) savings is now also a much lower proportion of total income than previously. That is, the average propensity to consume is now much larger than previously. If it is then assumed that the rise in the average propensity to consume is accompanied by a similar, though not necessarily exactly equal, rise in the marginal propensity to consume, the multiplier will now be greater than before. Thus, stability may not be inoreased, the rise of the multiplier offsetting the fall in the absolute size of any given proportionate change in the multiplicand.

The implication of the above quotation for the period to which it refers relating to foreign trade is the following: It was sometimes suggested in the interest of foreign trade stab1lity that the non-U.S. sectors should become as far as posaible, independent of the United states market, beasuse it is belleved that the most unstable element in world trade is the Instability of the United states economy. If this independence is established by the non-U.S. seotors switch-
ing exports to other sectors than the United States, in order to preserve dollar balance, imports from the United States have to decline pari passu. But $1 f$ this decline of the average propensity to import from the United States is accompanied by a similar decisne in the marginal propensity to import from the United States, the world multiplier will then increase and consequently stabllity may not be established, since the reduction in the absolute size of any given proportionate changes in the multiplicand (i.e. the United States imports sector) may be offset by that increase in the multiplier.

From the above sumary of Beckerman's ompirical work it is immediately evident that the orientation of his study was absolutely conditioned by the largely pseudo-problem of the dollar shortage.

The overwhelming international economic position of the United Stetes of that time caused serious fears as to the adaptability of the European economy to meet the American competition. Since the main analytical tool of this study is the international reflection ratio defined in such a fashion as to manifest the motor role assigned to the American economy, and since the intermational economic oonditions have substantially changed in the subsequent time, both the model and the conclusions therefrom have no real interest for the present.

111

Some of Beckerman'g results as given below show sector multipliers, reflection ratios for sterling member countries and reflection ratios for the international system of hie model, respectively.

Sector multipliers
sector
$1938 \quad 1948 \quad 1953$

1. Canada
$.42 \quad .45 \quad .40$
2. Dollar Latin America
$.33 \quad .46 \quad .37$
3. Sterling members of O.B.E.C.
$2.15 \quad 1.02 \quad .75$
4. Continental W. Europe
$\begin{array}{lll}2.92 & 1.47 & 1.86\end{array}$
5. Overseas territories of C. W. Europe .29 .26 . 23
6. Overseas sterling area
$1.24 \quad 1.10 \quad .92$
7. Non-dollar Latin America
$.44 \quad .52 \quad .33$
8. Easter Europe .57 .28 . 13
9. Others
1.10 .60 .53
10. Total
$\left(\begin{array}{llll} & =\text { World Trade Multiplier }) & 8.48 & 6.14\end{array} 5.52\right.$

Reflection ratios for aterling member countries

Sector from which U.S.	increase in purchases extra doliar of 1 mports
	exports of ling member tries
Sterling member countries	2.14
Others	1.25
overseas sterling ares	1.24
Eastern Europe	1.13
Continental W. Eurrope	1.08
Overgeas territories of C. W. Europe	1.07
Non-dollar Latin America	0.52
Canada	0.34
Dollar Latin America	0.30

Reflection ratios
sector

1. Canada
$\begin{array}{lll}1938 & 1943 & 1953\end{array}$
2. Latin Amerioa (Dollar)
$4.12 \quad 2.84 \quad 2.74$
3. Sterling member countries of O.E.B.C.
$13.61 \quad 9.32 \quad 8.49$
4. Continental W. Europe
$10.3212 .26 \quad 8.51$
5. Overseas territories
of C. W. Europe
$8.1611 .24 \quad 9.12$
6. Overseas sterling area
$10.47 \quad 9.53 \quad 7.52$
7. Non-dollar Latin Amerioa
$8.36 \quad 5.36 \quad 4.82$
8. Eastem Europe
$8.71 \quad 9.12 \quad 8.79$
9. Others
$11.36 \quad 9.25 \quad 10.51$

CONCLUSIONS

The present essay was an attempt to discuss systematically the income effect in intermational trade. The diecussion assumed the "Keynesian" assumptions and employed the approach and concepts of the post-Keynesian literature of the early fleties' especially. The multiplier and aocelerator mechanism has been the main tool of the anslysis. Stablifty conditions were examined and the influence of the marginal propensity to import was seen to be stabilizing under a oeteris paribus assumption. The dynamic version of a simple dynamic international trade model was an extension of the Harrod-Domar inquiries into the equalibrium path of income. The international system was a tight one, where the Income peth of one country was a function of the income path of the other. It was established that the case of 1nstablility of one country (ase where the aggregate propensity to expend on domestically produced goods and services is larger than unity) can be absorbed into a system of intemationsl trade exhibiting stablilty because of another country's low propensities.

A general international system, where again income was the only variable which attracts imports, was set up and the analysis was mainly confined to qualitative stability propositions. A striking formal analogy Solow (33) be-
tween that international system and the input-output analysis may have been noticed.

A system of i.inear equations

$$
y_{1}=a_{1,} y_{j}+b_{1} \quad(1, j=1, \ldots, n)
$$

is the form of both models in their static version. The $1 n-$ terpretation in the input-output oase is the following: y_{g} is the level of production of commodity $j, a_{i j}$ is the technical coefricient of commodity j with respect to commodity 2. or the per unit of f commodity input requirement of commodity i, b_{2} is some final (enogenous) demand. The difference in the economic interpretation of the symbols necessitates however somewhat different restrictions of the coefficients in the two models. The input-output matrix of coefficients $1 s$ restrioted to a non-negative matrix, while this is only the "romal" case in the international trade model. It is concelvable thet there are countries seliling inferior commodities with respect to another country's income in a large proportion, so that the $a_{1 j}$ in some particular oase (the marginal propensity of country f to 1 mport from country 1) may be negative. It is to be noted that the international trade model is from a theoretical point of view in a sense less satiafactory than the inputoutput model. While the latter aims at presenting an instantansous "technological" picture of the interindustry
transactions, the international trade model aims at explaining the network of international trade where the crucial variable is the income of each country. As such it is strictly applicable in an underemployment situation but still even in this case it is more difficult to maintain the assumption of constancy of the relative prices, especially when the theoretical model is intended for practical application. For the price variables which are relevent include such componente as tarlffs, transportation costs etc. which can hardly be assumed to change proportionately.

The emplrical studies which were summarized are a fair sample of the applioation of the income-effect approach to internetional trade. The greatest merit of the "Keynesian" models - apart from the theoretical insights they have of fered - is that they can be statistically relatively easily managed. Whether they represent the most fruitful approach available, it is to be decided on the general economio atmosphere of the time period under investigation. After 1955, since the world economy operates at a full employment level and the problem is the shortage of resources in many areas, any model intended for empirical research would be oruclally deficient without inclusion of price-effects.

BIELICORAPAY

1. Allen, R. G. D. The structure of macroeconomio models. Economic Journal 70: 38-56. 1960.
2. Angell, J. W. The theory of international prices. Cambridge, Mass., Harvard University Press. 1926.
3. Baumol, W. Econom1c dynamics. New York, N. Y., Macmilian Co. 1960.
4. Beckerman, W. The world trade multiplier and the stabillty of world trade, 1938 to 1953. Econometrica 24: 239-252. 1956.
5. Chipman, J. S. The multi-sector multipiler. Econometrica 18: 355-374. 1950.
6. Domar, E. Essays in the theory of economic growth. New York, N. Y., Oxford Univers1ty Press. 1957.
7. Ferguson, C. E. On theories of acceleration and growth. Quarterly Jouraal of Economios 74: 79-99. 1960.
B. Friedman, M. Essays in positive economice. Chicago, Ill., University of Chicago Press. 1953.
8. Haavelmo, T. Multiplier effects of a balanced budget. Econometrica 13: 311-318. 1945.
9. Haberler, G. The theory of intemational trade. London, Eng., Macmillan Company. 1937.
10. Harrod, \mathbb{R}. Towards a dynamic economics. London, Eng., Macmilian Company. 1948.
11. Hicks, J. B. Mr. Keynes and the classics. Econometrica 5: 147-159. 1937.
12. A contribution to the theory of the trade cycle. Oxford, Eng., Clarendon Press. 1950.
13. Iversen, C. Some aspects of the theory of international capital movements. Copenhagen, Denmark, Einar Munksgaard. 1935.
14. Johnson, 日. International trade and economic growth. Cambridge, Mass., Harvard University Press. 1958.
15. Keynes, J. N. General theory of employment, interest and money. London, Eng., Maomillan Company. 2936.
16. Lange, 0. The theory of the multiplier. Econometrioa 11: 227-245. 1943.
17. Meade, J. Nationsl income, national expenditures and the balance of payments. Economic Journal 58: 483505. 1948.
18. The theory of international economic policy. Oxford, Bng., Clarendon Press. 1955.
19. Metzler, L. The nature and stability of inventory oycles. Review of Economio Stetistics 23: 113-129. 1941.
20.

Underemployment equilibrium in world trade. Econometrica 10: 97-112. 1942.
22.

The transfer problem reconsidered. Journal of Political Economy 50: 397-414. 1942.
23. Stability of multiple markets: The Hickn conditions. Econometrice 13: 277-292. 1945.
24. A multiple-region theory of income and trade. Econometrica 18: 329-354. 1950.
25. Modigliani, P. Liquidity preference and the theory of interest and money. Econometrica 12: 45-88. 1944.
26. Mosak, J. General equilibrium theory in international trade. Bloomington, Indiana, University of Indiane Prese. 1944.
27. Neisser, H. and Modigliani, F. National incomes and intemational trade. Urbana, Ill., University of Illinois Press. 1953.
28. Nurkse, R. Internationale Kapitalbewegungen. Vienna, Austria, Springer. 2935.
29. Polak, J. The foreign trade multiplier. American Economic Review 37: 889-897. 1947.
30. England, An international econowic system. London,
31. Semuelson, P. Interactions between the multiplier analysia and the prinoiple of acceleration, Review of Econom10 statiatios 21: 75-73. 1939.
32. Poundations of economic analysis. Cambridge, Mass., Harvard Univeraity Press. 1958.
33. Solow, The structure of linear models. Eonometrica 20: 29-45. 1952.
34. Stolper, 1 . The volume of forelgn trade and the level of income. Quarterly Journal of Economios 61: 285310. 1947.
35. Viner, J. Stuales in the theory of international trade. New York, N. Y., Harper and Eros. 1937.

ACVMONLUDGENENTE

I wish to exprosse my gratitual to profecsor Erik Thorbecke whese patient guldanee wa generoue $2 y$ ava11able throughout the yomra of my atay at Iows Stete Univergity and whose friendehip I was privileged to enjoy.

1 wish further to exprass 制y sineewe appreciation of the asaintance of Profeasora karl Fox and Evik Thorbeake whiah wale 1 possiole for we to continue my studies in economjes.

[^0]: *From the standpoint of history of economic thought it is to be noted that the autonomous movements of capital are not unanimously considered "eutonomous" in the sense of being exogenous to a model of an open economy. An old and controversial subjeet is, indeed, whether the long-run capital movements adjust themselves to a given persistent imbalance in the other items of the balance of payments or whether it is the trade balance that follows the movements of capital, being really "autonomous" in the latter case. It is the classical view that the balance of trade is determined in the long run by independent capital movements view shared by Taussig, Wleksell, Von Mises, Cassel, Angell, Ohlin, Iversen, Haberler, in the present century. J. H. Keynes "The Gervan Transfer Problem" is the most distinguished representative of the non-autonomy of capital movements as defined in this footnote. The German ilterature on the topic in general adheres to this theory. For a discussion and a compromise position, see, J. Viner (35).

[^1]: *Another way to see this rigorously, is to take into account that the expression $\left(\delta+\delta_{1}\right)$ is the trace of the matrix of the coefficient of the system whose absolute value equals the absolute value of the sum of the roots. It is a necessary condition that this value be less than the degree of the system, in order that the latter be stable. Unless $b(s+m)+b^{\prime}\left(s^{\prime}+m^{\prime}\right)<0$ this necessary condition is not satisfied in our case. This however is highly unlikely.

[^2]: *One should speak of modele rather than model since each relationship is independent of any other; in other words, the dependent variable of each equation is determined by the independent or exogenous variables of the same equation. There are no simultaneous relationships.

